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We report on an experimental investigation of the propagation of gravity-capillary waves
in a narrow channel with a pinned contact line. By using Fourier transform profilometry
we measure the static curved meniscus as well as the surface perturbation. By varying the
channel width, between 7 and 15 times the capillary length, we show how edge constraints
modify the surface curvature and therefore the dispersion relation. From the space-time-
resolved field, we obtain a decomposition of the linear mode onto transverse modes
satisfying the condition of pinned contact line. This approach, in which we complement
the theoretical model with experimental analysis, allows computations of wave numbers
and natural frequencies with a robust statistics. We verify experimentally the convergence
of the model and the pertinence of the linear approximation. In addition, we analyze
the relative contribution of the experimentally measured static meniscus. An excellent
agreement between the computed natural frequencies and the forcing frequency confirms
the contribution of the actual space-time-resolved measured surface. These experimental
results are an accurate estimation of the influence of the additional restoring force exerted
by the pinned contact line on the deformed surface which increases the wave celerity. The
local character of this effect is evidenced by the decrease of the shift of the dispersion
relation as a function of the channel width.

DOI: 10.1103/PhysRevFluids.7.014802

I. INTRODUCTION

In the dynamics of surface waves, capillary effects become important when the geometry of
the container is in the same order of magnitude as the capillary length or in low-gravity condi-
tions, where the main restoring force is the surface tension [1–3]. Several recent applications and
experimental works make that the problem of calculating the damping and eigenfrequencies of
gravity-capillary waves is still an active subject [4–7]. When edge constraints are added (physical
restrictions to the movement of the contact line between the free surface and the container), the
change in the dynamic of propagating waves could become non-negligible. In fact, when the wave
amplitude is in the order of few millimeters and when the geometry of the container is in the
order of few centimeters, the type of boundary condition is crucial [8]. Depending on the wetting
conditions and the filling height of the container, the contact line can be pinned in a brimful
container [9,10], pinned with a low wettability (tendency of the liquid to be in contact with the
solid surface and inversely proportional to the contact angle) [11], slipping with low wettability and
surface displacement greater than the slipping threshold [8,12,13] (see details of slipping threshold
in Ref. [14]) or slipping with high wettability (hydrophilic boundary) [15,16], in which the effects of
edge constraints become negligible, i.e., the motion of the contact line can be considered as free and
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the dispersion relation of water waves is independent of the size of the container [17–19]. In each
one of these boundary conditions the dynamic of the contact line modifies the propagation of surface
waves in damping and dispersion. Since wetting is a multiscale problem, the characteristics length
and velocity of the phenomenon determine together the mechanism that dominate the phenomenon.
Indeed, the surface tension σ , the density ρ, and the gravity acceleration g give the characteristic
capillary length λc = √

σ/ρg below which the surface tension is important with respect to the
gravity. Besides, the ratio between σ and the dynamic water viscosity μ gives the characteristic
velocity Vc = σ/μ below which, as in this work, hydrodynamic losses dominate with respect to
molecular features in the wetting process [12,15].

Several theoretical models have already been developed in the past few decades, where some
linear approximations [8,9,11,20,21], or nonlinear approximations [14,22], have tried to model
the damping and eigenmodes of surface waves with different wetting-conditions. In particular, the
linear models proposed in Refs. [8,20,23] relates, at the lateral boundaries, the vertical velocity
and the surface gradient normal to the wall. This linear boundary condition spans from a complete
pinned contact line to a moving contact line. Some of the models have simplified the problem by
considering a 90◦ contact angle (brimful condition) for the static profile [9,21,24,25]. Other models
have considered a meniscus with contact angle different than 90◦, in which, the inviscid limit has
been explored in the studies in Refs. [11,13,26]. Besides, viscous conditions have been considered
in Ref. [27] for the case of 90◦ contact angle or in Ref. [10] for the case of a circular geometry and
concave meniscus with small contact angle. Moreover, an extensive study about the frequency and
damping rates of the surface waves modes with pinned contact line in a vertically vibrating container
can be found in Ref. [28] and recent experimental works have focused on the measurement of wave
damping due to the meniscus in nonwetting conditions [29]. In particular, the model developed in
Ref. [11] focuses on the propagation of progressive waves in a narrow channel where the static
meniscus is curved with a small contact angle. This is the case of the present work where we
have considered gravity-capillary waves in a rectangular channel propagating in one direction. The
laterals walls, parallels to the direction of wave propagation, have a concave meniscus which is a
very common case widely used in experimental investigations [30–34].

In this work, we present a direct measurement of the surface displacement and curvature in the
whole field, especially close to the lateral walls where capillary effects become important. Our
objective is to take advantage of the latest techniques developed in measuring the water surface
[35,36] to verify experimentally the influence of the surface curvature and contact angle in the
propagation of small amplitudes waves, in conditions where the Bond number Bo = ρgW 2/σ and
Reynolds number Re = ρuW/μ are small, with W the channel width and u the fluid velocity.
The article starts by presenting the theoretical model that allows computation of eigenfrequencies.
Then the experimental method and measurements are detailed before comparing, eventually, the
experimental dispersion relation to the theoretical model.

II. THEORETICAL MODEL

In this article we revisit the model developed in Ref. [11] (and references therein) but inserting
the experimentally measured values of the static meniscus as well as the transverse profile of the
surface displacement from which we obtain a transverse modal decomposition.

Let us consider a water waves rectangular channel of depth h and width W . As shown in Fig. 1,
we define the x direction or longitudinal as the one of the wave propagation, and the y direction as
the transverse one. The coordinate system is located at the center of the channel in the transverse
direction (y) and at the contact line in the vertical direction (z). The governing equations at the free
surface z = η̂ are

∂η̂

∂t
+ (u · ∇ )η̂ =uz, (1)

∂φ̂

∂t
+ 1

2
(∇φ̂)2 + gη̂ = σ

ρ
ĉ, (2)
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FIG. 1. Coordinate system of the rectangular channel for the propagation of surface waves with pinned
contact line

where u = ∇φ̂ is the water velocity, ĉ the surface curvature, and η̂(x, y, t ) the instantaneous free
surface position. The system satisfies the boundary conditions of impermeable lateral walls ∂yφ̂(y =
±W/2) = 0 and bottom ∂zφ̂(z = −h) = 0. Besides, the surface is pinned at the contact line, that is,
η̂(x, y = ±W/2, t ) = 0.

The surface displacement around the still position is produced by small amplitude waves. In this
case the still level corresponds to the static meniscus, which we denote ηs, and is equal to zero at the
contact line for simplicity in the calculation [ηs(x, y = ±W/2) = 0]. The linearization of the system
is done via formal expansions of the surface displacement, velocity potential and surface curvature,

η̂(x, y, t ) = ηs(x, y) + εη̃(x, y, t ) + . . ., (3)

φ̂(x, y, z, t ) = εφ̃(x, y, z, t ) + . . ., (4)

ĉ(x, y, t ) = cs(x, y) + εc̃(x, y, t ) + . . ., (5)

where ε is a small ordering parameter. We insert the above expansions in Eqs. (1) and (2) to obtain,
at the order ε0, the trivial static solutions ∂tηs = 0 and gηs = σ/ρcs, and at the order ε, the linearized
equations

∂η̃

∂t
+ (u · ∇ )ηs = uz, (6)

∂φ̃

∂t
+ gη̃ = σ

ρ
c̃, (7)

where c̃(x, y, t ) is the three-dimensional curvature of the water surface, whose expression is well
known and detailed in the Appendix A. It is worthwhile to mention that the linearized Eqs. (6) and
(7), in the case without edge constraints [infinite domain in the plane (x, y)] lead to the dispersion
relation of gravity-capillary waves

ω2 =
(

gk + σ

ρ
k3

)
tanh kh, (8)

where k is the wave number. Considering the harmonic regime we define

η̃(x, y, t ) = Re[η(x, y)e−iωt ], (9)

φ̃(x, y, z, t ) = Re[iφ(x, y, z)e−iωt ], (10)

c̃(x, y, z, t ) = Re[c(x, y)e−iωt ], (11)
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where η(x, y) and φ(x, y, z) are functions that satisfy the boundary conditions of impermeable walls
and bottom, as well as pinned contact line [η(x, y = ±W/2) = 0]. Here and in what follows we have
omitted the frequency dependence due to the harmonic regime, and thus the theory is developed for
a fixed frequency. At the lateral boundaries, the impermeable condition imposes a zero normal
velocity (uy = 0). However, a nonzero tangential velocity uz may exist in inviscid models like this,
as written in the right-hand side of Eq. (6). Thus, considering that we use an inviscid approximation
in the dynamics close to a solid surface, i.e., viscous effects in the boundary layer are neglected,
the condition of a pinned contact line forces the model to look for weak solutions. A theoretical
demonstration of the validity of this kind of solution can be found in Refs. [9,37] and references
therein.

We expand η(x, y) and φ(x, y, z) as follows:

η(x, y) =
∞∑

n=1

An(x) cos (νny), (12)

φ(x, y, z) =
∞∑

n=1

Bn(x)
cosh [λn(z + h)]

sinh (λnh)
cos (kny), (13)

with

kn = 2(n − 1)
π

W
, n = 1, 2, 3, . . ., (14)

νn = (2n − 1)
π

W
, n = 1, 2, 3, . . ., (15)

λ2
n = k2

n + k2
x , n = 1, 2, 3, . . ., (16)

where kx is the wave number in the direction of the wave propagation and is an independent variable
(input of the model). For the case of the surface displacement, we present in Fig. 1 the profile of the
first three transverse modes of the basis cos(νny). The functions An(x) and Bn(x) are obtained from
the transverse decomposition along the axis of wave propagation. In particular An(x) can be written
as a superposition of right- and left-going waves

An(x) = an(eikx,nx + rne−ikx,nx ), (17)

which we use to fit the coefficients an and rn and the wave numbers kx,n (complex valued).
Considering that we look for modes that are periodic in the x direction (and in time at the frequency
ω), we have that kx = kx,1 = kx,2, = · · · = kx,n. Thus, in the following we shall use only kx = kx,1

as the experimental measured value replaced in Eq. (16).
We replace the expression in Eqs. (12) and (13) in Eqs. (6) and (7) and project the equations onto

the basis cos(νny) to get the system of equations

ω

4
ai =

∞∑
n=1

γi,nbn, i = 1, 2, 3, . . ., (18)

ω

∞∑
n=1

δi,nbn =
∞∑

n=1

ξi,nan, i = 1, 2, 3, . . ., (19)

where the matrices γi,n, δi,n, and ξi,n represent the integrals detailed in Appendix B. The system of
2n equations (18) and (19) admits nontrivial zero solutions if

∞∑
n=1

ξi,nan = ω2
i

4

∞∑
n=1

[ ∞∑
l=1

δi,lγ
−1
l,n

]
an, i = 1, 2, 3, . . . . (20)

This equation is a matrix eigenvelue problem from which we can obtain the eigenfrequencies ωi.
In practice, we consider only the first eigenfrequency ω = ω1 which corresponds to the wave
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FIG. 2. Experimental set-up: A piston-type wavemaker (1) generates waves that propagate in a waveguide.
A fast camera (2) and a video projector (3) are used to measure waves by using FTP technique. An additional
camera (4) is located in front of the wavemaker to record the transverse profile of the surface. In the inset, a
view of the front camera shows the movable waveguides (5) and the fringes projected onto the water surface

forcing frequency. In this work, considering that the surface displacement η(x, y) is measured
experimentally, an can be obtained directly from the projection of the whole field η(x, y) onto the
transverse modes basis of Eq. (12) and from the fit in Eq. (17).

III. EXPERIMENTAL SET-UP

Waves propagate through a narrow waveguide which, in order to change the channel width,
consists of movable walls. A piston type wavemaker, driven by a linear motor (LinMot P10-70)
covering the whole water depth and adapted to each specific width, generates waves in the frequency
range ω = 2π f ∈ [2π, 10π ] s−1 with a precise frequency step of 0.1 Hz between experiments. In
each experiment, carried out in a harmonic regime (fixed ω), the motion of the wave maker is
sinusoidal in the form X (t ) = Awm sin(ωt ), with Awm ∈ [0.3, 5] mm. As shown in Fig. 2, the water
channel is h = 50 mm deep and L = 1 m long and the width varied between W = [22, 32, 42] mm.
The movement of the wavemaker was previously calibrated in Awm vs ω in order to keep the wave
amplitude at a = 0.4 mm in all the frequency range. This wave amplitude is well below the capillary
length λc =√

σ
ρg =2.7 mm. At the end of the channel an absorbing beach of 10% slope avoids spurious

wave reflections. The deformation of the water surface was measured using the Fourier transform
profilometry (FTP) technique [35,36], which measures the displacement of a pattern projected onto
a diffusively reflective surface. The pattern is composed of fringes with a sinusoidal variation in light
intensity. The fringes are projected perpendicular to the waveguides, being the phase gradient of the
sinusoidal variation parallel to the direction of the wave propagation (x direction). The phase shift
between a reference surface and a deformed surface gives, via an optical relation [38], the surface
height in each pixel of the image. The spatial resolution was dx = dy = 0.7 mm and the recording
frame rate was fs = 50 fps. As we observe in Fig. 2, the sinusoidal pattern is projected in the y
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(a) (b) (c) (d)

FIG. 3. Transverse profile in the meniscus zone for ω = 4π s−1 and W = 42 mm. (a) Wave trough with
pinned contact line; (b) wave crest with pinned contact line; (c) wave trough with slipping contact line; (d) wave
crest with slipping contact line. In this case z = 0 corresponds to the still water level without waveguides.

direction. Thus, the classical filtering of the carrier mode of the projected pattern was computed in
the x direction [38]. Instead, no filtering was applied in the y direction. For each experiment, FTP
acquisition covers 12 s starting 1 min after the wavemaker to avoid the transient part and reach a
stationary regime. In order to get a pinned contact line, experimental trials showed that the surface
of a plastic (PVC) wall, when is cleaned with ethanol, gives uniform hydrophobic conditions which
helps the contact line to stay pinned subject to the wave perturbations. Thus, before the experiments,
the waveguides were previously treated with ethanol and then submerged slowly in still water in
order to avoid wetting the zone above the contact line. For comparison, we have also set hydrophilic
conditions by covering the lateral walls with a nylon wire mesh with an opening of 0.1 mm. The
wire-mesh was previously wet in order to have a hemiwicking state [39].

IV. EXPERIMENTAL RESULTS

A. Qualitative observations

To begin, in order to get some qualitative observations, we carried out visualizations of the
transverse profile in the plane (y, z) by projecting a white line over an opaque surface (the water
has been previously colored with titanium dioxide which does not modify the surface tension nor
the wave damping as was shown in the comprehensive study in Ref. [40]). A fast camera located
at the end of the channel (see Fig. 2) recorded the transverse profile when waves pass through
the projected line. In Fig. 3 we show snapshots of the meniscus profile. For comparison, different
boundary conditions were tested. In Figs. 3(a) and 3(b) the waveguide has a bare face (hydrophobic)
which pins the contact line during the wave induced motion. In contrast, in Figs. 3(c) and 3(d)
a slipping contact line is imposed by using a wire mesh that keeps the wall wet. On both cases,
left panels [Figs. 3(a) and 3(c)] correspond to a wave trough and right panels [Figs. 3(b) and 3(d)]
correspond to a wave crest.

B. Quantitative results

The static profile ηs was measured using FTP by taking as a reference image the water surface
without waveguides, it is, completely flat. Thus, the still water surface, deformed by the static
meniscus was measured in the whole field, being as expected, invariant along the longitudinal
direction x. An example is shown in Fig. 4, where the static profile for the three channel widths
are compared. The vertical axis in Fig. 4 was shifted in order to set the contact line at z = 0. We
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FIG. 4. Static meniscus measured experimentally for three different channel widths. The vertical axis is
shifted to set the contact line at z = 0.

observe how the curvature of the static meniscus changes the water level in the center of the channel
(y = 0), especially for the narrowest case.

Quantitative experiments were performed via the optical FTP technique. We measured the space-
time-resolved surface perturbation η(x, y, t ) from which we extract the linear mode from a temporal
Fourier decomposition,

η(x, y, ω) = 1

T

∫ T

0
η(x, y, t )eiωt dt, (21)

where T = 2Nπ/ω is the total duration of the experiment with N integer. We have verified that
the amplitude of the second temporal mode η(x, y, 2ω), for the lowest frequency (ω = 2π s−1), is
around 20% of the linear mode. This amplitude decreases rapidly as a function of frequency up to
ω ≈ 20 s−1 where it is smaller than 5% of the linear mode. As we shall see further in the experi-
mental results, the effect of pinned contact line starts to be important at ω > 20 s−1, thus we can
consider that our system is dominated by the linear mode. Since in this case the FTP measures the
perturbation from a reference already deformed by a meniscus in still water, the transverse profile of
the perturbation at the boundary, as we can see in Fig. 5(a), becomes curved [|∂yη(y= ± W/2)|>0]
for the pinned edge condition and flat [∂yη(y = ±W/2) ≈ 0] for the slipping edge condition.
The deformed surface for the case with pinned contact line can be decomposed in the transverse
modal basis of Eq. (12) in order to get the x-dependent functions An(x). The reconstruction of the
transverse profile of an experiment with pinned contact line is shown in Fig. 5(a) in dashed line,
where the transverse modes decomposition was computed with n = 20 modes showing good agree-
ment in the whole profile. The surface curvature generated by the wave field in the pinned case can
also be observed in Fig. 5(c), where the isolines form closed ellipses due to the higher surface
deformation in the center of the waveguide. In contrast, in the slipping case the wave field in
Fig. 5(b) is invariant in the y direction. The difference between both experiments can also be
observed in terms of wavelength. Considering that both experiments were measured at the same
wave frequency (ω = 25 s−1) and with the same channel width (W = 32 mm), we would not expect
any difference in the x direction. However, at a glance they show a different wavelength, a fact that
make them with opposite phases after three wavelengths.

The functions An(x) are fitted with a linear propagating wave using Eq. (17) in order to get the
coefficients an and rn and more importantly wave vectors kx,n. In Figs. 6(a)–6(d), for one fixed
frequency, we present the real part of the functions An(x), with n = [1, 2, 3, 4] and the fitted curves.
We observe a very good agreement of the linear approximation and a decreasing amplitude as a
function of n. In Fig. 6(e), varying ω between experiments, we present the fitted wave number kx,n

(real part) for n = 1, 2, 3, 4, showing that, at each frequency, all the functions An(x) have the same
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FIG. 5. FTP measurements of the propagation of waves with slipping and pinned contact line conditions.
(a) Transverse profile of the surface perturbation (ω = 8π s−1; W = 32 mm; x = 0.6 m). (b) Wave field with
slipping contact line (ω = 8π s−1; W = 32 mm; wavemaker phase ωt = 3π/2); (c) wave field with pinned
contact line (ω = 8π s−1; W = 32 mm; wavemaker phase ωt = 3π/2).

longitudinal wave number (kx,1 = kx,2 = kx,3 = · · · = kx,n). Thus, without loss of generality we can
use kx = kx,1 as an input in Eq. (16) to calculate λn which is used in the transverse decomposition
in Eq. (13) and further calculations. On the other hand, the imaginary part of kx,n gives the wave
spatial damping. As expected, the spatial decay is inversely proportional to the channel with. As
a function of ω, the spatial decay is in the range Im(kx,1) ∈ [0.60, 0.90] m−1 in the case W =
22 mm, Im(kx,1) ∈ [0.40, 0.68] m−1 in the case W = 32 mm, and Im(kx,1) ∈ [0.35, 0.55] m−1 in
the case W = 42 mm. We have verified that these values of spatial damping agree with the boundary-
layer approximation in Ref. [41]. Regarding the amplitude fitted coefficients in the whole frequency
spectrum, the incident waves coefficients are in the range a1 = 0.4 ± 0.1 mm, and the reflected

FIG. 6. Longitudinal functions An(x) (Re) and fitted linear wave for the case W = 22 mm and ω = 24.5
s−1. Panels (a), (b), (c), and (d) correspond to the functions A1(x), A2(x), A3(x), and A4(x) respectively. (e)
Fitted wave number kx,n from the longitudinal functions An(x) with n = 1, 2, 3, 4 as a function of frequency.
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FIG. 7. Three experiments at the same wave number kx = 71 m−1 and three different channel widths.
(a) Frequency ω as a function of n calculated from Eq. (20). (b) Coefficients an obtained from the expansion of
Eq. (12) and the fit of Eq. (17), normalized by the first mode a1. The inset shows a zoom over the mode n = 2.

wave coefficients r1 are smaller than 0.1. This verifies a linear regime with weak reflection where
the maximum wave steepness is kxa1 < 0.04.

Having measured the static profile ηs, fitted the wave number kx and calculated the transverse
decomposition, we can obtain ω from Eq. (20), which is plotted in Fig. 7(a) as a function of the
number of transverse modes n. Here we want to compare three channel widths for a fixed wave
number kx = 71 m−1. We can observe small variations and a plateau after five modes confirming the
accuracy, robustness, and convergence of the frequency. Considering that at the same kx = 71 m−1

the curvature due to wave steepness is also the same, the difference in frequency observed in
Fig. 7(a) can only be explained due to transverse constraints. In Fig. 7(b), we show the relative
contribution of the fitted coefficients an which is rapidly decreasing as a function of n. The
contribution of the modes n > 8 is in the order of 1% of the first mode which is consistent with
the convergence of the frequency. Analyzing more in detail the first three modes, we observe that
at a fixed kx, the narrower is the channel the smaller is the contribution of the modes n = 2 [as we
observe in the inset of Fig. 7(b)] and n = 3. The small contribution of higher modes (n = [2, 3])
indicates a more stretched surface produced by the tension between the pinned contact line against
the wave induced perturbation. In this case, the transverse profile of the surface perturbation is
higher in the center of the channel, due to the proximity of the lateral walls. In contrast, when
lateral walls are far from each other, the transverse profile of the surface perturbation tends to be flat
(rectangular) with larger contribution of higher modes.

Next, we have varied ω between experiments to explore the whole dispersion relation. In order
to quantify the contribution of the space-time-resolved measurement of the static meniscus and
the surface perturbation, we present in Fig. 8 three curves obtained theoretically, with n = 20
modes, and compared with the experimentally measured values for the case W = 22 mm. First, we
computed the frequency ω from Eq. (20) considering a flat static meniscus with 90◦ contact angle,
that is, ηs = 0, and calculating the eigenvectors bn from the minimization of the system of Eqs. (20).
This curve is plotted in dotted line and corresponds to the lowest estimation of the dispersion
relation. The computation is improved in the dashed line when the static meniscus is considered,
that is, ηs �= 0. This computed dispersion relation has the best agreement to the experimental data
with a difference smaller than 0.5%. In Fig. 8 the error bars represent the estimation of the error of
the experimental measurements. The errors due to accuracy of the instruments are the water depth
with an error of �h = ±1 mm, the channel width with an error of �W = ±0.1 mm, and the pixel
size of the FTP technique with an error of �dx = �dy = ±0.002 mm.
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FIG. 8. Theoretical dispersion relation for the case W = 22 mm considering the relative contribution of
measured meniscus ηs. The dotted line indicates the case ηs = 0, the dashed line shows the case ηs �= 0
(experimentally measured), and the solid line shows the dispersion relation of water waves without edge
constraints.

Eventually, we present in Fig. 9 the experimentally measured dispersion relation for the three
channel widths with two different edge conditions: Pinned contact line (bare wall) and slipping
contact line (wire mesh). As we observe, with pinned contact line, the dispersion relation is shifted
down when smaller is the channel width. In contrast, the condition of slipping contact line does
not change the dispersion relation independently of the channel width. Thus, for a fixed frequency,
the slipping contact line wave number is always higher than the pinned contact line wave number.
For example, at the maximum explored frequency, ω = 31.4 s−1, the difference in wave number
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FIG. 9. Dispersion relation from the experimental data and the theoretical model. Symbols: Experiments
with pinned and slipping contact line for the three channel widths: W = [22, 32, 42] mm; the solid line shows
the dispersion relation from Eq. (8); the dashed, dash-dotted, and dotted lines show the theoretical model from
Eq. (20) for the three channel widths.
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between the slipping and the pinned contact line conditions is 17.9, 11.2, and 8.1 m−1 for the channel
widths W = 22, 32, and 42 mm, respectively. In the other direction, for a fixed wave number, the
pinned frequency is always larger than the slipping frequency. The theoretical dispersion relation
for each channel width was calculated with n = 20 transverse modes and takes into account the
experimentally measured static meniscus ηs �= 0.

As we observe in Fig. 9, the agreement between the experiments and the theoretical model at
high frequency (ω > 25 s−1) is worse for small channel width. The limited spatial resolution of the
optical technique (FTP) makes that the number of points in the y direction decreases with the channel
width. Therefore, the resolution and accuracy in the measurement of the static meniscus ηs and the
surface perturbation η(x, y) is necessarily lower in a very narrow channel. This problem rises from
the experimental compromise between having a high spatial resolution or having a large number of
spatial wave periods. In the first case, we can have a better resolution for the measurement of the
static profile and the surface perturbation. However, error bars in the measurements of kx would be
larger due to limited number of spatial wave periods in the x direction. In the second case, which
is the case that we have chosen in this work, we have an accurate measurement of the dispersion
relation but with a limited accuracy in the estimation of the influence of transverse constraints. In
this article we have preferred to show an accurate dispersion relation, which we consider an asset of
our space-time-resolved experiments. Despite this fact, the theoretical model is still in the error bar
of the dispersion relation, confirming the pertinence of the linear approximation.

V. CONCLUSION

In this article we report on the FTP measurements of the propagation of surface gravity-capillary
waves in a rectangular channel. Two different boundary condition were tested: Bare walls cleaned
previously with ethanol setting hydrophobic conditions which pinned the contact line and walls
covered with a wire mesh setting wet conditions which allows an easy slipping of the contact line.

We have varied the channel width and measured the dispersion relation for both boundary
conditions. We verified experimentally that a slipping contact line makes the dispersion relation
independent of the channel width. In contrast, a pinned contact line modifies the dispersion relation
up to 20% lower in wave number when the channel width is divided by two. In Fig. 9 we have
shown an experimental confirmation of the model developed in Ref. [11] where we have in addition
inserted experimental measurements of the static meniscus and surface perturbation. Regarding the
static meniscus, when we compare its contribution with respect to a flat still profile, the precision
of the dispersion relation is improved around 4%. These experimental results reveal that the pinned
contact line exerts a force in the opposite direction of the wave displacement. This force acts as an
additional restoring force increasing, together with the gravity and the surface tension, the phase
velocity of the wave. On the other hand, we have observed from the experiments that the slipping
contact line follows accurately the dispersion relation of gravity capillary waves, as the influence
of the pinned contact line is the only source of disagreement between both experimental series.
Besides, we observed as expected, that the influence of the pinned contact line and its restoring
force is local, that is, the larger is the fluid domain, the lower is the influence in the dispersion
relationship.

The advantage of the space-time-resolved measurement is a robust statistics, where we were able
to compute the natural frequency by using all the points in the longitudinal direction (around 1000
points) to fit the functions An(x), get the transverse coefficients an and the wave numbers kx. That
allows us to shift the natural frequencies [ω = ω1 from Eq. (20)] closer to the experimental data.
This verifies our hypothesis of improving the estimation of the dispersion relation by measuring
precisely the actual surface deformation.

The present experiments can be easily applied to different geometries like cylindrical containers.
The measure of the surface deformation in each point of the domain gives a statistically strong way
to apply weak solutions to this type of problems where analytic solutions are difficult. An interesting
continuation of this work may include the measure of the nonlinear effects of a sliding contact line
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in nonwetting (hydrophobic) or partial wetting conditions, by increasing the wave amplitude beyond
the meniscus height to force the sliding of the contact line. Besides, different types of surfaces can
also be tested, like porous, granular or inclined walls. The measurement of the contact angle and
the theoretical relation of the small scale with the surface wave scale is also a relevant work for a
comprehensive analysis of the problem.
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APPENDIX A: SURFACE CURVATURE

The general curvature of the water surface is

ĉ = [1 + (∂yη)2]∂xxη − 2∂xη∂yη∂xyη + [1 + (∂xη)2]∂yyη

[1 + (∂xη)2 + (∂yη)2]3/2 , (A1)

where we replace the expansion of Eq. (3) and the projection of Eq. (12) to obtain the linearized
perturbation of the curvature

c(x, y) = −3∂yηscs∂yη

[1 + (∂yηs)2]
+ ∂yyη

[1 + (∂yηs)2]3/2

+ ∂xxη

[1 + (∂yηs)2]1/2 , (A2)

where the derivatives of the surface perturbation are

∂yη =−νnan sin νny, (A3)

∂yyη =−ν2
n an cos νny, (A4)

∂xxη =−k2
x an cos νny, (A5)

APPENDIX B: INTEGRALS

Integrals over the interval y = [0, 1/2] of the projection of Eqs. (18) and (19) onto the transverse
basis cos νiy,

γi,n =
∫ 1/2

0

(
λn cos (kny)

sinh {λn[ηs(y) + h]}
sinh (λnh)

+kn∂yηs sin (kny)
cosh {λn[ηs(y) + h]}

sinh (λnh)

)
cos (νiy)dy,

(B1)

δi,n =
∫ 1/2

0
cos (kny) cos (νiy)

cosh {λn[ηs(y) + h]}
sinh (λnh)

dy, (B2)

ξi,n = 1

an

∫ 1/2

0
[an cos (νny) − β ĉ(x, y)] cos (νiy)dy. (B3)
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