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1 Introduction

The goal of the report is to present a graph matching method based on the leading Eigenvector
and Sinkhorn-Knopp algorithm. A tutorial and codes are provided on :

https://gitlab.com/romain.raveaux/a-graph-matching-method-based-on-the-leading-eigen-vector-and-sinkhorn-knopp-algorithm

2 The graph matching problem

The objective of graph matching is to find correspondences between two attributed graphs G1 and
G2. A solution of graph matching is defined as a subset of possible correspondences Y ⊆ V1 × V2,
represented by a binary assignment matrix Y ∈ {0, 1}n1×n2, where n1 and n2 denote the number of
nodes in G1 and G2, respectively. If ui ∈ V1 matches vk ∈ V2, then Yi,k = 1, and Yi,k = 0 otherwise.
We denote by y ∈ {0, 1}n1.n2, a column-wise vectorized replica of Y . With this notation, graph
matching problems can be expressed as finding the assignment vector y∗ that maximizes a score
function S(G1, G2, y) as follows:

Problem 1. Graph matching model (GMM)

y∗ =argmax
y

S(G1, G2, y) (1a)

subject to y ∈ {0, 1}n1.n2 (1b)

n1∑
i=1

yi,k ≤ 1 ∀k ∈ [1, · · · , n2] (1c)

n2∑
k=1

yi,k ≤ 1 ∀i ∈ [1, · · · , n1] (1d)

where equations (1c),(1d) induces the matching constraints, thus making y an assignment vec-
tor.

The function S(G1, G2, y) measures the similarity of graph attributes, and is typically decom-
posed into a first order dissimilarity function s(ui, vk) for a node pair ui ∈ V1 and vk ∈ V2, and
a second-order similarity function s(eij , ekl) for an edge pair eij ∈ E1 and ekl ∈ E2. Thus, the
objective function of graph matching is defined as:

S(G1, G2, y) =

n1∑
i=1

n2∑
k=1

s(ui, vk) · yi,k +

n1∑
i=1

n1∑
j=1

n2∑
k=1

n2∑
l=1

s(eij , ekl) · yik · yjl

=

n1∑
i=1

n1∑
j=1

n2∑
k=1

n2∑
l=1

Kik,jl · yi,k · yj,l

=yTKy

(2)
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Similarity functions are usually represented by a symmetric similarity matrix K ∈ Rn1n2×n1n2.
A non-diagonal element Kik,jl = s(eij , ekl) contains the edge similarity and a diagonal term
Kik,ik = s(ui, vk) represents the vertex similarity. K is called an affinity matrix or compati-
bility matrix. In this representation, Kij,kl = 0 means an impossible matching or a very dissimilar
matching. In essence, the score accumulates all the similarity values that are relevant to the as-
signment. The formulation in Problem 1 is referred to as an integer quadratic programming. This
integer quadratic programming expresses the quadratic assignment problem, which is known to be
NP-hard [1]. This model was proposed in [3].

3 Relaxed graph matching problems

The NP-hard graph matching problem is relaxed by dropping both the binary and the mapping
constraints. The quadratic assignment problem is relaxed to the continuous domain and the match-
ing constraints are replaced by a ball constraint forcing the solution to be at the surface a ball of
radius one.

The model to be solved is then:

Problem 2. Graph Matching Relaxed by L2-norm

y∗ =argmax
y

yTKy (3a)

subject to y ∈ [0, 1]|V1|·|V2| (3b)

∥y∥2 = 1 (3c)

4 Relation between Graph Matching Relaxed by L2-norm
and Lagrangian relaxation

4.1 Lagrangian relaxation problem

Lagrangian relaxation is a method to solve optimization problem under constraints. The main idea
is to inject the constraints into the objective function as penalties. The penalties increase as the
solution breaks the constraints. Our Problem 2 becomes :

Problem 3. Lagrangian relaxation of the Relaxed Graph Matching

y∗ = argmax
y∈[0,1]|V1|·|V2|

yTKy + λ(1− ∥y∥2) (4a)

The objective function is composed of two terms. 1) The score of the graph matching yTKy
and 2) The penalty (1− ∥y∥2) that gauges the gap between the magnitude of y and 1. λ ∈ R is a
Lagrange multipliers connecting/weighting the two terms. Let us denote by l1 and l2 the two terms
such that l1 = yTKy and l2 = 1− ∥y∥2. Let us denote by L(λ, y) the function to be maximized:

L(λ, y) = l1(y) + λl2(y) = yTKy + λ(1− ∥y∥2 (5)

4.2 Solving the Lagrangian relaxation

To solve Problem 3, we need to compute where the derivative of L with respect y equals 0.

∂L(y)

∂y
= 0 (6)

Let us calculate the gradient of L:

∂L(y)

∂y
= 2K.y + λ(−2y) (7)
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Let us set ∂L(y)
∂y to zero and isolate λ.

∂L(y)

∂y
=0 (8a)

2K.y + λ(−2y) = 0 (8b)

2K.y − 2λy = 0 (8c)

K.y − λy = 0 (8d)

K.y = λy (8e)

The equation 8e is exactly the definition of an eigenvector of the matrix K. So y is an eigenvector
and λ is an eigenvalue.

4.3 Which eigenvector is y ?

Let us notice that ∥y∥2 = yT y = 1. Now let us multiply the equation 8e by yT .

yT .K.y = λyT .y (9a)

yT .K.y = λ (9b)

The left part of the equation 9b is exactly our graph matching objective function (Equation 2).
The right part of the equation 9b is just λ. We want to maximise our objective function so we
want λ with the maximum value. λ is an eigenvalue so we want the principal eigenvector. The
eigenvector that corresponds the largest eigenvalue (λ).

y is the leading eigenvector of matrix K.

5 Solving the relaxed graph matching problem

The optimal y∗ of Problem 2 is then given by the leading eigenvector of the matrix K. Therefore,
the eigenvalues of K are values of λ that satisfy the equation:

5.1 Computing the Eigenvectors

First, we need to find the eigenvalues λ ∈ R such that :

det(K − λI) = 0 (10)

I is the identity matrix. det() is a function computing the determinant of a matrix. There is not only
one values that satisfies the Equation 10. So potential values of λ are denoted λi. P = det(K−λI)
is a polynomial of the variable λ. Setting the polynomial (P) equal to zero: P = 0, we need to
find values of λ that set P to zero. Such values are called root of the polynomial. The roots of the
polynomial at λi ∀i ∈ [1, · · · , n1.n2]. λi are the eigenvalues of K. The eigenvector corresponding
to each eigenvalue can be found by solving for the components of mλi

in the equation:

(K − λI)mλi = 0 ∀i ∈ [1, · · · , n1.n2] (11)

The eigenvector associated to the highest eigenvalue is the solution of the Problem 2.

k∗ = arg max
k∈[1,··· ,n1.n2]

λk (12)

y∗ = mλk∗ (13)
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5.2 Power iteration

Computing the leading eigenvector y∗ of the affinity matrix K can be approximated by using power
iterations.

m(k+1) =
Km(k)

∥Km(k)∥2
(14)

m0 = 1 is initialize to 1. N iterations are run to output the vector y∗ = m(N).
The time complexity of this algorithm per power iteration is O(n12.n22) when the matrix K is

dense. The power iteration algorithm is presented in [6].

6 Refined the relaxed graph matching problem by adding
of the one-to-one mapping constraints

The solution y∗ of the relaxed graph matching problem (Problem 2) is reshaped to become a matrix
Y ∗ ∈ Rn1×n2. Then, the matrix Y ∗ is modified to become a doubly stochastic matrix. In the graph
matching context, this modification represents the addition of the one-to-one mapping constraints
(L1 constraints) ∀k,

∑
i Yi,k = 1 and ∀i,

∑
k Yi,k = 1. To address this problem the let us first define

the Kantorovitch problem that contains such one-to-one mapping constraints.

6.1 Kantorovitch Problem (KP)

A = {ai}|A|
i=1 and B = {bj}|B|

j=1 are two sets with ai and bj ∈ R+. The dissimilarity dissimilarity
function c(ai, bj) ∈ R+ for a pair ai ∈ A and bj ∈ B.

A solution of KP is matrix P ∈ R|A|×|B|
+ . We denote by p ∈ R|A|.|B|

+ , a column-wise vectorized
replica of P. The KP is defined as follows :

Problem 4. Kantorovitch Problem (KP)

p̂ =argmin
p

∑
ai∈A

∑
bj∈B

c(ai, bj) · pi,j (15a)

subject to p ∈ R|A|.|B|
+ (15b)∑

ai∈A

pi,j = bj ∀bj ∈ B (15c)

∑
bj∈B

pi,j = ai ∀ai ∈ A (15d)

∑
ai∈A

ai =
∑
bj∈B

bj (15e)

There exists a solution to KP only if
∑

ai∈A ai =
∑

bj∈B bj .
Let us define a special case of KP where:

1. |A| = |B| = N

2. ai = bj = 1 ∀ai ∈ A ∀bj ∈ B.

Now we define the Kantorovitch Problem in this special case.

Problem 5. Special Case Kantorovitch Problem (SCKP)

p̂ =argmin
p

∑
ai∈A

∑
bj∈B

c(ai, bj) · pi,j (16a)

subject to p ∈ R|A|.|B|
+ (16b)∑

ai∈A

pi,j = 1 ∀bj ∈ B (16c)

∑
bj∈B

pi,j = 1 ∀ai ∈ A (16d)
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P is a doubly-stochastic matrix. P is positive and rows and columns sum to one. P is the set
of all doubly-stochastic matrices. P ∈ RN×N

+ is doubly-stochastic matrix where rows and columns
sum to one consequently any value Pi,j must be smaller or equal to one. Therefore the domain of
P can be refined to P ∈ [0, 1]N×N .

The Sinkhorn algorithm [5, 2] is fast heuristic for the KP. Even though the original algorithm
assumes only square matrices, the process can be generalized as shown in [4]

6.2 Sinkhorn algorithm

The transformation of the matrix Y ∗ to a doubly stochastic matrix is performed by the Sinkhorn-
Knopp algorithm. It is an iterative algorithm. At each iteration the algorithm normalizes the rows
of Y ∗ and then the columns of Y ∗. Starting with M (0) = Y ∗. The algorithm goes as follows:

M (k+1) = Mk[1
T
n1M

(k)]−1

M (k+2) = [M (k+1)1n2]
−1M (k+1)

M
(k+1)
i,j =

M
(k)
i,j∑

j M
(k)
i,j

∀i ∈ [1, · · · , n1]

M
(k+2)
i,j =

M
(k+1)
i,j∑

i M
(k+1)
i,j

∀j ∈ [1, · · · , n2]

With : 1n1 ∈ 1n1×1 and 1n2 ∈ 1n2×1. The Sinkhorn algorithm is presented in [6].
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