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Abstract

The goal of this technical report is to detail the link between the Linear
Sum Assignment Problem (LSAP) and the Kantorovitch Problem (KP)
also called Optimal Transport. This relation is not new and is reported
in [5]

1 Introduction

The goal of this technical report is to draw a link1 between the Linear Sum
Assignment Problem (LSAP) [2] and the Kantorovitch Problem (KP) [5].
The link between both problems is strong because KP is a generalization
of LSAP. LSAP is a special case of the KP.

Consequently, fast heuristics for the KP can be applied to LSAP.

2 Linear Sum Assignment Problem

V is a set of vertices. A vertex u ∈ V is an arbitrary object. |V | is the size
of the set V . LSAP is a matching problem between two sets of vertices
V1 and V2 of equal size such that |V1| = |V2| = N . The objective of
LSAP is to �nd correspondences between two sets V1 and V2. A solution
of LSAP is de�ned as a subset of possible correspondences V ⊆ V1 × V2,
represented by a binary assignment matrix V ∈ {0, 1}|N×N . If ui ∈ V1

matches uk ∈ V2, then Vi,k = 1, and Vi,k = 0 otherwise. We denote by

v ∈ {0, 1}N
2

, a column-wise vectorized replica of V. With this notation,
matching problems can be expressed as �nding the assignment vector v̂
that minimizes a cost function C(V1, V2,v) as follows:

1https://www.youtube.com/watch?v=Vyjf7TnUYKk
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Problem 1. Linear Sum Assignment Problem (LSAP)

v̂ =argmin
v

C(V1, V2,v) (1a)

subject to v ∈ {0, 1}N
2

(1b)∑
ui∈V1

vi,k = 1 ∀uk ∈ V2 (1c)

∑
uk∈V2

vi,k = 1 ∀ui ∈ V1 (1d)

where equations (1c),(1d) induces the matching constraints, thus mak-
ing v an assignment vector. Therefore, V is a permutation matrix where
rows and column sum to one and containing values in {0, 1}.

The function C(V1, V2,v) measures the dissimilarity of vertices, and is
composed of a �rst order dissimilarity function c(ui, uk) ∈ R+ for a vertex
pair ui ∈ V1 and uk ∈ V2. The objective function of LSAP is de�ned as:

C(V1, V2,v) =
∑
ui∈V1

∑
uk∈V2

c(ui, uk) · vi,k (2)

In essence, the cost accumulates all the dissimilarity values that are
relevant to the assignment. C is a linear function according to the variable
v. The problem has been proven to be polynomial with a worst case
complexity O(N3) [2]. One famous exact method for the LSAP is the
Hungarian method [2].

Dissimilarities { c(ui, uk) | ui ∈ V1 and uk ∈ V2 } can be stored in

a vector cv ∈ RN
2

+ . Therefore the objective function can be written as
follows :

C(V1, V2,v) =cvT · v (3)

This problem (Problem 1) is a discrete problem with an argmin oper-
ator and it can be written as a permutation problem. φ is a permutation
function de�ned as φ : {1, 2, 3, · · · , N} → {1, 2, 3, · · · , N}. Φ is a set of
all permutations.

Problem 2. Permutation problem

φ̂ = argmin
φ∈Φ

∑
ui∈V1

∑
uk∈V2

c(ui, uφ(i)) · vi,φ(i) (4)

3 Kantorovitch Problem

X = {xi}|X|i=1 and Y = {yj}|Y |j=1 are two sets with xi and yj ∈ Rd. Associ-
ated with these two sets, we denote by Pr(xi) = ai and Pr(yj) = bj .
Pr(xi) is the probability to observe xi. A solution of KP is matrix

P ∈ R|X|×|Y |+ . We denote by p ∈ R|X|.|Y |+ , a column-wise vectorized
replica of P. The KP is de�ned as follows :
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Problem 3. Kantorovitch Problem (KP)

p̂ =argmin
p

∑
xi∈X

∑
yj∈Y

c(xi, yj) · pi,j (5a)

subject to p ∈ R|X|.|Y |+ (5b)∑
ai∈X

pi,j = bj ∀bj ∈ Y (5c)

∑
bj∈Y

pi,j = ai ∀ai ∈ X (5d)

∑
ai∈X

ai =
∑
bj∈Y

bj (5e)

There exists a solution to KP only if
∑
ai∈X ai =

∑
bj∈Y bj .

4 From KP to LSAP

In this section, we want to show the link between KP and LSAP.
Let us de�ne a special case of KP where:

1. |X| = |Y | = N

2. ai = bj = 1 ∀ai ∈ X ∀bj ∈ Y .
Now we de�ne the Kantorovitch Problem in this special case.

Problem 4. Special Case Kantorovitch Problem (SCKP)

p̂ =argmin
p

∑
ai∈X

∑
bj∈Y

c(xi, yj) · pi,j (6a)

subject to p ∈ R|X|.|Y |+ (6b)∑
ai∈X

pi,j = 1 ∀bj ∈ Y (6c)

∑
bj∈Y

pi,j = 1 ∀ai ∈ X (6d)

SCKP has a worst case complexity in O(N3) [5].
P is a doubly-stochastic matrix. P is positive and rows and columns

sum to one. P is the set of all doubly-stochastic matrices. The set of all
permutations Φ is smaller than P because it is the intersection between
two sets :

Φ = P ∩ {0, 1}N×N (7)

Φ ⊆ P (8)

Permutation matrices are doubly-stochastic matrices. The inverse is
not true. LSAP operates on a smaller set of variables than SCKP. P ∈
RN×N+ is doubly-stochastic matrix where rows and columns sum to one
consequently any value Pi,j must be smaller or equal to one. Therefore
the domain of P can be re�ned to P ∈ [0, 1]N×N .

Here are the main ideas linking the SCKP to LSAP :

1. SCKP minimises a linear function on the set of doubly-stochastic
matrices.

2. LSAP minimises a linear function on the set of permutation matrices.
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3. The set of permutation matrices is a subset of the set of doubly-
stochastic matrices.

4. The solution space of SCKP is a bounded polytope so it is a poly-
hedra.

5. The polyhedra is convex. Convex means when you link two points
in the convex set you stay in the set.

6. Extreme points of a polyhedra are vertices.

7. Minimizing a linear function over a convex set implies that there
exits an optimal solution of the problem that is an extreme point (a
vertex) of the polyhedra.

8. Consequently, SCKP has at least one optimal solution that is an
extreme point of the polyhedra.

9. The Birkho� [4] theorem says that extreme points of the set of
doubly-stochastic matrices belong to the set of permutation matri-
ces.

10. A consequence of the Birkho� [4], there is an optimal solution of
SCKP that is an optimal solution of LSAP.

11. Issue : Many optimal solutions of SCKP can exist. All optimal
solutions are not permutation matrices.

5 From relaxed LSAP to KP

Let us relax the LSAP to the continuous domain.

Problem 5. Relaxed Linear Sum Assignment Problem

v̂ =argmin
v

∑
ui∈V1

∑
uk∈V2

c(ui, uk) · vi,k (9a)

subject to v ∈ [0, 1]
N2

(9b)∑
ui∈V1

vi,k = 1 ∀uk ∈ V2 (9c)

∑
uk∈V2

vi,k = 1 ∀ui ∈ V1 (9d)

The Relaxed LSAP is a special case of the Kantorovich problem named
SCKP in our paper. Fortunately, the optimal solution of the continuous
relaxation of the LSAP gives the optimal solution the LSAP. It can be seen
as a consequence of the Birkho� theorem that ensures doubly-stochastic
matrices are the convex envelope of permutation matrices.

The Sinkhorn algorithm [6, 1] is fast heuristic for the KP. Therefore,
LSAP can be solved e�ciently thanks to the Sinkhorn algorithm. Issue
: The solution provided by the Sinkhorn algorithm is not mandatory a
permutation matrix.

6 Conclusion

In the technical report, we show how the Linear Sum Assignment Problem
can be seen as a special case of the Kantorovitch Problem. So, LSAP
can be solved e�ciently thanks to the Sinkhorn algorithm. Even though
the original algorithm assumes only square matrices, the process can be
generalized as shown in [3]
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