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A closed-form solution for the adhesive contact of soft spheres of linear elastic material is

available since 1971 thanks to the work of Johnson, Kendall, and Roberts (JKR). A similar

solution for viscoelastic spheres is still missing, though semi-analytical and numerical

models are available today. In this note, we propose a closed-form analytical solution,

based on JKR theory, for the detachment of a rigid sphere from a viscoelastic substrate.

The solution returns the applied load and contact penetration as functions of the contact

radius and correctly captures the velocity-dependent nature of the viscoelastic pull-off.

Moreover, a simple approach is provided to estimate the stick time, i.e., the delay

between the time the sphere starts raising from the substrate and the time the contact

radius starts reducing. A simple formula is also suggested for the viscoelastic pull-off

force. Finally, a comparison with experimental and numerical data is shown.

Keywords: rate-dependent adhesion, viscoelasticity, JKR theory, soft matter, pull-off force

1. INTRODUCTION

Velocity-induced increase of adhesionmay be observed when detaching two viscoelasticmedia, due
to their rate-dependent behavior (Baek et al., 2017, 2018; Violano and Afferrante, 2019a). Adhesion
is of paramount importance in several applications. For example, in printing industry, kinetically
controlled adhesion has been exploited to transfer solid print objects from one elastomeric stamp
to another (Metil et al., 2006). In biomedical field, experimental investigations effectively provided
the rate-dependence of adhesion of articular cartilage tissue over a wide range of unloading
velocities (Han et al., 2020). In tapes industry, structural adhesives (Blackman et al., 2009) and
pressure-sensitive adhesives (Villey et al., 2015) often show rate-dependent behavior. Moreover,
in Goryacheva et al. (1996) and Menga et al. (2018) it has been shown that contact pressure and
internal stress distributions are significantly affected by viscoelastic properties.

In the “basic” adhesive contact between a rigid sphere and an elastic soft half-space, analytical
closed-form solution is available thanks to the work of Johnson, Kendall, and Roberts (JKR)
(Johnson et al., 1971). JKR theory returns simple expressions relating applied load F, contact
penetration δ, and contact radius a. A similar solution is not available in the viscoelastic case, and
one must use numerical or semi-analytical approaches to deal with this problem.

Exploiting the analogy between the rupture of adhesive bond and crack propagation,Maugis and
Barquins (MB) first studied the detachment of a sphere from a soft substrate (Maugis and Barquins,
1980). According to Gent and Schultz (GS) findings (Gent and Schultz, 1972), they assumed that
viscous dissipation is mainly located in the vicinity of the contact line. In their experiments, MB
measured a surface energy greater than the quasi-static value predicted by JKR theory.
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Inspired by MB work, Muller (1999) proposed a semi-
analytical approach, based on the numerical solution of a first
order differential equation, to obtain the contact radius in
terms of the penetration of the sphere in the half-space. More
elaborated strategies were proposed in Greenwood and Johnson
(1981), Barthel and Haiat (2002), Lin et al. (2002), and Haiat et al.
(2003).

All above methods do not return simple relations between
load, penetration and contact radius. Moreover, an immediate
estimate of the pull-off force, i.e., the maximum tensile force
required for detachment, is not possible. Here, we instead
propose a closed-form analytical solution based on JKR theory.
Simple expressions are derived for F(a) and δ(a). Furthermore,
empirical formulas are obtained for pull-off force and stick-
time, which is the delay between the time the sphere starts
raising from the substrate and the time the contact radius starts
reducing. The proposed solution is validated on experimental
and numerical data.

2. FORMULATION

Figure 1 shows the geometry of the problem under investigation:
a rigid sphere of radius R is pulled apart from a viscoelastic
half-space at a driving velocity V .

For an elastic substrate, the applied load FE and the
penetration δE can be determined in terms of the contact radius
a by JKR theory (Johnson et al., 1971)

FE =
4

3

E∗a3

R
−
√

8πE∗a31γ (1)

δE =
a2

R
−

√

2πa1γ

E∗
, (2)

where E∗ is the equivalent elastic modulus and 1γ is the
adiabatic surface energy, which depends on the adhesive
properties of the contacting interfaces.

In the presence of a viscoelastic substrate, viscous dissipation
occurs during detachment. Gent and Schultz (1972), in order
to take into account such dissipation, introduced an effective
velocity-dependent surface energy 1γeff. Maugis and Barquins

FIGURE 1 | The problem under investigation: a rigid sphere is pulled apart

from a viscoelastic half-space.

(1978) and Charmet et al. (1999) observed that viscoelastic losses
are proportional to the adiabatic work of adhesion 1γ and are
only localized at the crack tip. Consequently, the dissipation
function can be written in terms of proportionality of 1γ and a
dimensionless function ϕ (aTV) of the contact line speed vc =

−da/dt and of the temperature through the William-Landel-
Ferry (WLF) factor aT (Williams et al., 1955). Such dissipation
function is characteristic of the viscoelastic material and is
independent of the geometry of contact. These observations can
be traduced in the following equation (Gent and Schultz, 1972;
Maugis and Barquins, 1978)

1γeff − 1γ = 1γϕ (aTV) , (3)

whose application entails “that gross displacements are purely
elastic, with 1γeff computed from the relaxed elastic modulus E

and that the frequency dependence of E only appears at the crack
tip where deformation velocities are high” (Charmet et al., 1999).

Therefore, the loss factor Re(E)/Im(E) and its dependence on
the frequency are taken into account in the function ϕ (Ramond
et al., 1985). Specifically, for elastomers, the function ϕ can be
expressed in terms of a power law of the contact line velocity

ϕ (aTvc) = kanTv
n
c =

(

vc/v
∗
)n

, (4)

where v∗ takes account of the dependence on the temperature.
Finally, substituting (4) in (3),

1γeff(a) = 1γ [1+
(

vc (a) /v∗
)n
]. (5)

In the above equation, the viscoelastic constants v∗ and n can be
measured experimentally (Gent and Schultz, 1972; Muller, 1999;
Violano and Afferrante, 2019a). Notice the exponent n is not a
universal number but takes different values depending on the
viscoelastic modulus (Lorenz et al., 2013). Moreover, we have to
mention that Persson et al. developed a theoretical approach to
relate the dissipation function ϕ (aTvc) to the bulk viscoelastic
modulus E(ω) (Carbone and Persson, 2005; Persson and Brener,
2005; Persson et al., 2005). In this regard, we could calculate the
effective surface energy 1γeff from the bulk parameters and then
find the values of v∗ and n of Equation (5). However, to do this,
we should accurately know E(ω) in a wide interval of frequencies
ω (ranging from the rubbery region to the glassy one), which is
not the case.

To describe the detachment behavior of the sphere, one should
know the exact law vc(a). As the pulling velocity isV = −dδ/dt, it
is straightforward to observe that vc = V · da/dδ. The derivative
da/dδ can be numerically calculated by solving the differential
equation given in Muller (1999). Alternatively, we can estimate
da/dδ from JKR solution, so that

vc = V

(

2a

R
−

√

π1γ

2aE∗

)−1

. (6)

Of course, we expect that such approximation works well at low
pulling velocities V and progressively gets worse increasing V .
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Therefore, inspired by a similar approach proposed in Barthel
and Roux (2000), Equations (1) and (2) can be then used to
determine the applied load F and the penetration δ in the
viscoelastic substrate by replacing 1γ with the effective surface
energy 1γeff

F =
4

3

E∗a3

R
−
√

8πE∗a31γeff(a) (7)

δ =
a2

R
−

√

2πa1γeff(a)

E∗
(8)

Notice (7) and (8) return JKR solution when viscous effects are
neglected.

Introducing the following dimensionless quantities

1γ̂ = 1γ/
(

E∗R
)

; V̂ = V/v∗; δ̂ = δ/R;

F̂ = F/
(

E∗R2
)

; â = a/R (9)

the above relations can be rewritten as

F̂ = 4â3/3−
√

8π â31γ̂eff (10)

δ̂ = â2 −
√

2π â1γ̂eff (11)

being 1γ̂eff = 1γ̂
(

1+ v̂nc
)

and v̂c = vc/v
∗.

2.1. The Stick Zone
If we denote with amax the contact radius reached at the end
of the loading phase, the corresponding penetration δmax and
compressive force Fmax can be calculated by Equations (1) and
(2).

Many experimental (Deruelle et al., 1998; Morishita et al.,
2008; Baek et al., 2017, 2018; Violano et al., 2020a) and numerical
(Lin et al., 2002; Haiat et al., 2003) works showed the contact
radius amax remains almost constant (contact line velocity
vc ≈ 0) during the initial phase of the unloading process.
Only when a critical penetration δc is reached, the contact
radius starts to decrease and consequently vc increases. The
zone where the contact radius is constant and the penetration
reduces from the initial value δmax to δc (see Figure 2) is usually
identified as stick zone. The corresponding time interval is the
stick time. This sticking effect is one of the main causes of
adhesion hysteresis (Chaudhury and Whitesides, 1991; Violano
and Afferrante, 2019a), which is the difference between the work
spent bringing into contact two media and the one required for
detaching them.

The origin of the stick zone was explained by Maugis and
Barquins (1980) exploiting an analogy with the linear elastic
fracture mechanics. In the framework of the detachment of a
circular flat punch from a viscoelastic substrate, they showed that
the spontaneous rupture of the contact occurs when the energy
release rate exceeds the surface energy. This occurs when the
penetration is reduced at a critical value δc.

To include the effect of sticking in our solution, we observe
that in the stick zone the problem resembles the detachment of
a circular flat punch of radius amax. As a result, we can assume
Equations (10) and (11) working for δ̂ < δ̂c, and the flat punch
solution (12) working for δ̂c ≤ δ̂ ≤ δ̂max, i.e.,

δ̂ = δ̂max −
F̂max − F̂

2âmax
. (12)

FIGURE 2 | The dimensionless contact radius â = a/R in terms of the

dimensionless penetration δ̂ = δ/R. Curves are shown for JKR theory (black

dashed line), Muller’s numerical model (green dashed line), and proposed

model (red solid line).

The critical penetration δ̂c is hence obtained substituting âmax

in (11). As a result, the stick zone and stick time can be easily
estimated as

1δ̂stick = δ̂max − δ̂c (13)

1t̂stick = 1δ̂stick/V̂ (14)

where 1t̂stick = 1tstickv
∗/R.

2.2. Pull-Off
In the elastic case, contact break-up occurs at aED =
(

π1γR2/8E∗
)1/3

if the process of detachment is displacement
controlled. In the presence of dissipation, Figure 2 shows that
a very good estimate of the pull-off point can be empirically
obtained at the inflection point of the red curve where

d2a

dδ2

∣

∣

∣

∣

pull−off

= −
d2δ

da2
1

(

dδ/da
)3

= 0 →
d2δ

da2
= 0 .

(15)
Thus solution of Equation (15) returns an estimate of the contact
radius at pull-off aVD, while Equation (8) allows to calculate the
critical penetration at the contact break-up.

Under load controlled conditions, JKR theory predicts contact

rupture at aEL =
(

9π1γR2/8E∗
)1/3

. Similarly, the contact radius
at pull-off aVL in the viscoelastic case can be calculated recalling
that

dF

dδ

∣

∣

∣

∣

pull−off

=
dF

da

1

dδ/da
= 0 →

dF

da
= 0 . (16)
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The pull-off force, i.e., the maximum tensile force required to
detach the sphere, is, therefore (see also Lorenz et al., 2013),

Fpull−off,VL = −
3

2
πR1γeff(aVL). (17)

To obtain a closed-form expression for aVL, we consider the
zeroth order expansion of (5) around aEL, and then solve
Equation (16) obtaining, in terms of the dimensionless quantities,

âVL =

{

9π1γ̂

8

[

1+

(

31/3V̂

2π1/31γ̂ 1/3

)n]}1/3

. (18)

Finally, the pull-off force is

F̂pull−off, VL = −
3π1γ̂

2



1+ V̂n



2âVL −

√

π1γ̂

2âVL





−n

 .

(19)

3. RESULTS

In this section, the theoretical predictions are compared with
experimental data and numerical calculations in terms of contact
radius a, pulled force F, and penetration δ.

Experimental data are taken fromViolano et al. (2020a), where
JKR-like tests were carried out between an optical spherical glass
lens with radius of curvature R = 103.7 mm and smooth rubber
substrates made of PolyDiMethylSiloxane (PDMS) silicones

FIGURE 3 | The dimensionless contact line velocity v̂c as a function of the

dimensionless contact radius â for different pulling velocities

V̂ = 0.1847, 1.847, 18.47 (V = 0.2, 2, 20 µm/s). Markers denote experimental

data, while solid lines refer to the prediction given by Equation (6) with the

actual pulling velocity Vact.

(more details on the experimental set-up can be found in that
work).

Loading tests were performed increasing the force step by step
andmaintaining the contact at each step for a long time to ensure
complete relaxation of the viscoelastic material (as suggested in
Acito et al., 2019).

Unloading tests were carried out starting from a maximum
load Fmax = 0.02 N and for different driving velocities V = 0.2,
2, 20 µm/s. Moreover, three contact realizations were considered
for each velocity. Experimental data of unloading tests were also
used to calculate the viscoelastic parameters n = 0.25 and v∗ =

1.08281× 10−6 m/s by fitting with Equation (5) the values of the
quantity (1γeff − 1γ )/1γ .

FIGURE 4 | Dimensionless contact radius â (A) and contact force F̂ (B) as

functions of the dimensionless approach δ̂ for different driving velocities

V̂ = 0.1847, 1.847, 18.47 (V = 0.2, 2.0, 20 µm/s). Experimental data are

plotted with colored markers, while solid lines are the theoretical predictions.

Frontiers in Mechanical Engineering | www.frontiersin.org 4 April 2021 | Volume 7 | Article 664486

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Violano et al. A JKR-Like Solution for Viscoelastic Adhesive Contacts

The equivalent elastic modulus (E∗ = 0.83 MPa) and the
adiabatic surface energy (1γ = 37 mJ/m2) were obtained by
fitting, with JKR model (Johnson et al., 1971), the contact radius
vs. load data of the loading curve.

The actual pulling velocity Vact of the lens was found to be
quite different from the imposed valueV as the spherical indenter
was fixed to a motorized vertical translation stage by means of a
double cantilever beam of finite stiffness. For this reason, a laser
displacement sensor was used to monitor the actual position of
the lens and measure Vact. Furthermore, the contact line velocity
vc = −da/dt was also monitored since pictures of contact
radius a and corresponding time steps t were collected during
unloading.

Therefore, the law vc(a) required to evaluate the velocity-
dependent surface energy 1γeff given in Equation (5) can be
determined by fitting the experimental data relating vc with a.
Alternatively, when experimental data are not available, vc can be
estimated by Equation (6).

Figure 3 shows the dimensionless contact line velocity v̂c as a
function of the dimensionless contact radius â at different pulling
velocities. Markers refer to experimental measurements, while
solid lines to Equation (6) with V replaced with the actual pulling
velocity Vact.

The idea to derive the contact line velocity from JKR solution
seems to work well enough as the agreement with experimental
results is acceptable in the whole range of variation of the
contact radius, although at the highest pulling velocity our
approximation is less accurate.

FIGURE 5 | The predicted pull-off force F̂pull−off,VL, normalized with respect to

JKR’s one (F̂pull−off,JKR = 1.5π1γ̂ ), as a function of the dimensionless driving

velocity V̂. Blue diamonds refer to experimental data, while red circles to

theoretical predictions. Black dashed line denotes the predictions of the

empirical Equation (19).

Figures 4A,B show the curves relating the dimensionless
contact radius â, contact penetration δ̂, and contact force F̂ for
different driving velocities V̂ . Markers denote experimental data
obtained from three replications of unloading tests performed for
each value of V̂ .

Theoretical predictions (solid lines) almost agree with
experimental outcomes even if small deviations occur at
the highest velocity, where the analytical solution seems to
overestimate viscoelastic dissipation as Equation (6) gives a
slightly larger contact line velocity.

FIGURE 6 | Dimensionless contact radius â (A) and contact force F̂ (B) as

functions of the dimensionless penetration δ̂ for V̂ = 0.1847 (V = 0.2 µm/s).

Results are given for different initial points of unloading. Loading curve (blach

dashed line) is obtained with JKR’s model, while unloading curves are

obtained with the proposed solution (red solid line) and Muller’s numerical one

(green dashed line).
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The pull-off force F̂pull−off,VL, normalized with respect to JKR

value (F̂pull−off,JKR = −1.5π1γ̂ ), is shown in Figure 5 in terms

of the driving velocity V̂ . Predictions of the present model (red
circles) almost agree with the experimental values. Moreover, the
approximate formula (19) (black dashed line) works equally well
even if we use the imposed value of the driving velocity V and
not the actual one Vact. In the range of velocities here considered
[which are typical of adhesive contact experiments (Guduru and
Bull, 2007; Baek et al., 2017)], differences at the higher velocities
between analytical predictions and experimental data are of the
same order of experimental scatter.

Figure 6 shows a comparison of the proposed analytical
solution with the numerical results by Muller’s model (Muller,
1999), which showed to be quite accurate in predicting the pull-
off process of viscoelastic spheres (see Violano and Afferrante,
2019a; Violano et al., 2020a). The curves are obtained assuming
the same values of the parameters (R = 103.7 mm, 1γ = 37
mJ/m2, E∗ = 0.83 MPa, n = 0.25, and v∗ = 1.08281 × 10−6

m/s) but changing the maximum force reached at the end of the
loading phase, which is assumed to be performed at sufficiently
slow velocity to make working JKR theory.

Specifically, Figures 6A,B show the dependence of the contact
radius and contact force on the contact penetration for different
values of the maximum force and V̂ = 0.1847 (V = 0.2 µm/s).
Black dashed lines refer to the loading phase and are obtained
by using JKR theory, while red solid and green dashed lines
refer to the unloading phase. The former are obtained through
Equations (10) and (11), the latter by numerically integrating
the differential equation proposed in Muller (1999). Notice our
predictions closely match the numerical ones.

Moreover, we observe that the stick zone, i.e., the zone at
constant contact radius, is almost independent of the point at
which unloading starts in agreement with experimental findings
given in Baek et al. (2017, 2018) and Deruelle et al. (1998).
Finally, Figure 6B shows all curves collapse on the same path
entailing that the pull-off force is independent of the initial point
of unloading.

4. CONCLUSIONS

In this work, we propose a simple analytical solution for the
problem of detachment of a rigid sphere from a viscoelastic

substrate. The solution is formulated under the assumption that
viscoelastic dissipation is localized at the edge of the contact line.
Specifically, closed-form equations are proposed for pull-off force
and stick zone. The model is based on the assumption the contact
line velocity vc can be derived from JKR theory. An extensive
comparison with experimental data and numerical calculations
shows such assumption works quite well in a wide range of
contact radii and pulling velocities.

The proposed solution could be exploited in multiasperity
models (see, e.g., Afferrante et al., 2012, 2018; Violano and
Afferrante, 2019b; Violano et al., 2020b) to take into account
dissipation effects occurring during the detachment of rigid
spheres from soft rough substrates.
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