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Abstract: We report on the experimental behavior of oil drops suspended in water and passing in a 

constricted capillary tube under an imposed pressure gradient. The surfaces of droplets are covered either 

by colloidal solid particles or soluble surfactants. We investigate the coupling between the flow behavior 

and the concentration gradient in adsorbed species that are induced by surface expansion, when a water 

lubrication film persists between the drop and the capillary walls. For both particle-laden and surfactant-

laden drops, we evidence the formation of strong concentrations gradients resulting in surface tension 

gradients. We show how local values of surface tension can be monitored using flowrate measurements. In 

the case of particle-laden drops, we demonstrate the surface tension gradient is balanced by viscous friction 

in the lubrication film. In the case of surfactant-laden drops, we suggest a Marangoni flow opposes the 

decrease of surfactant concentration at the front of the drop, up to a threshold value of the surface expansion 

rate. Finally, we discuss how these effects increase the passage time of surfactant-laden drops in the 

constriction. 

 

I. Introduction 

Practical situations in which soft objects suspended in a liquid pass through narrow pores are ubiquitous: 

crude oil emulsions in porous rocks, red blood cells in constricted arteries, droplets or capsules in lab-on-

a-chip microfluidic devices … The behavior of a single drop or bubble flowing through a constricted 

capillary has been studied both theoretically 1, and experimentally 2, 3: It may clog the pore, break-up, or 

pass through it as a whole depending on the size ratio between the drop and the pore, on the capillary 

number that compares viscous and capillary effects 4, on the viscosity ratio of the fluid phases 5 as well as  

on the wetting angle of the continuous liquid phase with the pore material 6 and the geometrical parameters 

of the constriction 7. The condition for clogging a constriction under an imposed pressure gradient has been 

thoroughly investigated for drops and bubbles 8; the clogging threshold depends on the Laplace pressures 

across the deformed drop. More precisely, the pressure variation across the curved interface at the front of 

the drop opposes the driving pressure gradient whereas, at the back of the drop, the Laplace pressure 
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contributes to push the drop forward. The imposed pressure threshold for clogging a constriction is therefore 

given by the difference between the Laplace pressures at the front and at the back of the drop. 

The presence of adsorbed species at the surface of drops or bubbles changing the interfacial tension is 

expected to modify the clogging threshold. In practical situations, adsorbed species may be surfactants or 

solid particles. This is of particular interest in the process of enhanced oil recovery, which consists in 

injecting water in an oil well in order to detach oil from the porous rocks. Injected water may contain solid 

particles resulting from the drilling process, as well as added surfactants. Oil droplets with their surfaces 

covered by surfactants and/or solid particles form and must flow in a porous media to be carried to the 

surface. In the literature, the case of surfactant-laden droplets in a constriction has been examined; the 

decrease of surface tension induces a decrease of the Laplace pressures and hence favors the passage 

through a constriction by lowering the clogging threshold. Constant and uniform surface concentration of 

surfactants are sometimes considered 9, nevertheless flow-induced concentration gradients in adsorbed 

species can be expected since the drop surface is expanded in the contraction. Such gradients have been 

evidenced in numerical studies dealing with drops or bubbles laden with insoluble surfactants passing 

through a constriction 10, 11; strong concentrations gradients between the front and the back were reported. 

However, possibly because of the different constriction geometries that were considered, the reported 

directions of the gradients are opposed, the surfactant concentration being decreased at the front of the drop 

in one study 10, and increased in the other 11. Further investigation is therefore needed to fully understand 

the effects at stake. In addition, the development of concentration gradients in a constriction has never been 

studied experimentally, as far as we know.  

More generally, we address the question of the possible coupling of flow in a constriction and concentration 

gradients with respect to the nature of the adsorbed species. The effects of induced concentration gradients 

are expected to differ for particle-laden and surfactant-laden interfaces; this point is illustrated in Fig.1 

where the variations of interfacial tension with covering rate or interfacial concentration are schematically 

represented. In the case of an interface laden with soluble surfactants, the interfacial tension 𝛾 decreases 

with increasing surfactant interfacial concentration Γ, until it reaches its minimum value 𝛾𝑐𝑚𝑐 when the 

bulk concentration reaches the critical micellar concentration (cmc). The three configurations A, B, and C 

depict respectively a bare interface, a moderately surfactant-laden interface, and a saturated interface with 

a bulk surfactant concentration equal to or larger than the cmc.  

 

Figure 1: Schematic representation of the variation of interfacial tension 𝛾 of particle-laden (black line) 

or surfactant-laden (red line) interfaces with respectively the covering rate or the interfacial concentration 

𝛤. Schematic representations of the situations corresponding to three points of the curves are shown for 

surfactant (left) and particles (right) laden interfaces. 
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The interfacial tension of a particle-laden interface exhibits different variations 12. As long as the interface 

is not saturated with particles (configuration A-B) – i.e. provided the particles do not percolate – the 

interfacial tension 𝛾 remains equal to the surface tension of the bare interface 𝛾𝑜/𝑤. Equivalently, it 

corresponds to a vanishing surface pressure, which is defined as 𝜋 = 𝛾𝑜/𝑤 − 𝛾. Above particle close 

packing, the interfacial tension 𝛾 decreases and conversely the surface pressure 𝜋 increases as the interface 

is under stress (configuration C). At large enough surface pressures (configuration D), the interface behaves 

as a 2D elastic solid and one can observe buckling, crumpling, faceting or arching depending on the particle 

size 13-15. The surface pressure can be larger than 𝛾𝑜/𝑤 and, as a consequence the surface tension can become 

negative, possibly resulting in buckling and/or particle expulsion 16, 17. 

In the present work, we experimentally investigate and compare the behaviors of surfactant-laden and 

particle-laden drops flowing through a contraction under an imposed pressure gradient; we show that, in 

both cases, strong concentration gradients of either surfactants or solid particles form at the surface of the 

drop as a result of its expansion. We study how, in turn, these gradients modify the passage of the droplet 

through the contraction. We focus on drops whose surfaces are initially saturated with surfactants or 

particles and the varying parameter is the imposed pressure difference along the contraction.  

 

II. Materials and methods 

A. Pressure-controlled microfluidic setup 

The experimental set-up is schematized in Fig. 2. The constricted capillaries (Hilgenberg gmbh) are of 

circular section and are made of borosilicate glass. We denote as Oz the axis of the capillary whose origin 

lies at the center of the constriction and, in the following, we use the cylindrical coordinates (𝑟, 𝑧). We 

denote as 𝑟𝑐𝑎𝑝(𝑧) the local radius of the capillary; far away from the constriction 𝑟𝑐𝑎𝑝 = 600µ𝑚 and 

𝑟𝑐𝑎𝑝(0) = 25µ𝑚, the curvature radius of the constriction being 𝑅𝑐𝑎𝑝 =  2 𝑚𝑚. Two positions along the z-

axis are defined in Fig. 2b: 𝑧𝐵 and 𝑧𝐹 are respectively the farthest upstream and downstream positions at 

which the tangents to the drop and to the capillary walls are the same, 𝑧𝐺 is the position of the mass center 

of the drop. 

In order to impose constant pressure differences between the two ends of the capillary, it is connected to a 

pressure controller (OB1 MK3+ provided by Elveflow) with 0-200mbar channels dedicated to the control 

of pressure in the microfluidic circuit. Two low volume pressure sensors (0–70mbar) placed before and 

after the contraction are connected to the pressure controller, allowing to regulate the pressures upstream 

and downstream the contraction. All junctions, unions and valves are made of PEEK with 0.5 mm inner 

diameter, and we use PTFE tubes with 0.8 mm inner diameter. The pressure difference ∆𝑃 that is read and 

controlled with the sensors corresponds to the one imposed across the contraction and was varied between 

500 and 5000 Pa. The drop deformation in the contraction is recorded using an inversed optical microscope 

equipped with a x5 objective and with an ultra-high speed camera (Photron) at 10 000 fps, and up to 18 000 

fps for the fastest drops. 
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Figure 2: a. Schematic representation of the experimental set-up. b. Schematic representation of an oil 

drop in water crossing the contraction and definition of the notations.  

The experiments were performed at low capillary numbers 𝐶𝑎 = 𝑈𝐹𝜂𝑤 𝛾⁄ , with 𝑈𝐹 the drop front velocity 

and 𝜂𝑤 the water viscosity: in all experiments 𝐶𝑎 ≤ 10−2. In addition, we consider situations in which oil 

does not wet the capillary walls. Consequently, there is always a lubrication water film between the drop 

and the capillary wall and its thickness is computed in the following. The lubrication film is always thin 

enough to neglect the water flowrate compared to the drop flowrate, as justified in Appendix A. 

The hydrodynamic resistance Ψ  was computed by making several hypotheses. First, the resistance was 

assumed to be given by the one of the constricted part, i.e. a region comprised between positions 𝑧𝑢𝑝 and 

𝑧𝑑𝑜𝑤𝑛 that are chosen respectively as the upstream and downstream positions along the z-axis closest to the 

constriction and at which 𝑟𝑐𝑎𝑝 = 600µ𝑚. Second, the flow in this part was assumed to be a Hagen-

Poiseuille flow and the curvature of the walls was neglected. Third, in the part occupied by the drop, the 

contribution to flow of the lubrication water film was neglected, as mentioned above. The hydrodynamic 

resistance is obtained by extending the well-known relation between flowrate and pressure gradient in a 

circular channel 18 to a varying-radius channel: 

Ψ =
4𝜂𝑤

𝜋
[∫

1

𝑟(𝑧)4 𝑑𝑧
𝑧𝐵

𝑧𝑢𝑝
+

𝜂𝑜

𝜂𝑤
∫

1

𝑟(𝑧)4 𝑑𝑧 + ∫
1

𝑟(𝑧)4 𝑑𝑧
𝑧𝑑𝑜𝑤𝑛

𝑧𝐹

𝑧𝐹

𝑧𝐵
]  (1) 

where 𝜂𝑤 is the water viscosity, and 𝜂𝑜 the oil viscosity. In practice, we have found Ψ depends weakly on 

When only water flows in the capillary (corresponding to the condition 𝑧𝐵 = 𝑧𝐹), the hydrodynamic 

resistance is measured to be Ψ = (1.4 ± 0.1) × 1012 Pa. s. m−3.  

The drop flowrate 𝑄 is measured by image analysis. Within the experimental conditions, both front and 

back parts of the drop can be approximated by spherical caps. By detecting the front and back extreme 

positions of the drop and the capillary walls we are able to deduce the front and back curvature radii, 

respectively 𝜌𝐹 and 𝜌𝐵, the mass center position 𝑧𝐺 (the zero reference is taken at the contraction center) 

and the drop flowrate 𝑄 at any time (see Fig. 2). Figure 3 shows an example of measured time variations 

of the curvature radii and flow rate.  In the case of particle-laden drops, the velocity at the oil/water interface 
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𝑈𝑖𝑛𝑡 is measured by particle tracking. The flowrate minimum is reached when the front of the drop is at the 

center of the contraction, which also corresponds to a minimum of the front curvature radius. 

 

Figure3: left axis: Normalized drop flowrate (red circles). Right axis: curvature radius of the drop back (black 

circles) and front (blue circles) as a function of time for a 125 µm radius surfactant-laden drop at an imposed 

pressure difference Δ𝑃 = 1202 𝑃𝑎. 

 

B. Generation of surfactant laden drops 

The surfactant-laden oil drops (average radius 125µm) are generated using a flow focusing device made of 

a tapered micropipette inserted in a squared section glass capillary, connected to the pressure controller. 

Oil flows in the tapered micropipette, and surfactant solution is the outer phase. The difference between the 

oil and water pressures controls the size and number of oil in water drops, and their generation frequency. 

The surfactant solution is made of deionized water with 10−4mol. L−1 added NaCl and CTAB 

(cetyltrimethylammonium bromide). CTAB critical micellar concentration (cmc) is 9 × 10−4mol. L−1 and 

its concentration in the solution is either 1, 5 or 10 times cmc. The oil used for drop generation is n-dodecane 

from VWR, of viscosity 1.3 × 10−3Pa. s.  

The relation between surface concentration of surfactant, Γ, and surface tension 𝛾 is well described by: 

𝛾 = 𝛾𝑜/𝑤 + 2𝑅𝑇Γ∞Log (1 −
Γ

Γ∞
)    (2)  

where R is the ideal gas constant, 𝑇 = 298K is the temperature at which all the experiments are performed 

and Log stands for the Napierian logarithm. Γ∞ is the surface concentration at saturation and was measured 

to be 2.5 × 10−6mol. m−2, in agreement with existing data on CTAB at oil/water interface 19-21. 

The interfacial tension of oil with water was measured using a pendant drop experiment (Teclis), and was 

found to be 38.6 ± 0.6 mN. 𝑚−1 at zero CTAB concentration and 5.6 ± 0.6 mN. m−1 at concentrations 

larger than cmc. 

C. Preparation of Pickering emulsions 
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Same NaCl aqueous solution and oil have been used for the Pickering emulsion formulation as for the 

surfactant-stabilized emulsions. The stabilizing particles are monodisperse silica microspheres of 1.5 µm 

diameter (Fiber Optic Center) that are highly hydrophylic. 

The particles are first dispersed in 10 mL NaCl solution using an ultrasonic probe (20 000Hz, 40% of 

maximum intensity). Oil is further added and the emulsion is obtained by mixing at 18 000 rpm during 30s. 

Full emulsification is ensured by the absence of neither creamed oil layer nor sedimented solid particles. 

The diameter of the formed drops 𝐷drop, measured with optical microscopy, ranges from 200µm to 300µm. 

The surface fraction 𝐶 = 0.86 ± 0.04 of particles at the interface is measured from close views (inset of 

Fig. 4). As observed on microscopy images, the drops are densely covered by particles, almost at hexagonal 

close packing. 

 

Figure 4: View of a Pickering drop covered with silica microspheres (scale-bar 50µm) and close view of 

its surface (inset, scale bar 5µm). The surface fraction covered with particles was measured to be 𝐶 =

0.86 ± 0.04 from close up views. 

 

Assuming the emulsions are in the limited coalescence regime 22, the surface fraction is given by: 

𝐶 =
𝐷𝑑𝑟𝑜𝑝

4𝑑𝑠

𝜌𝑜𝑀𝑠

𝜌𝑠𝑀𝑜
       (3) 

where  𝑑𝑠 = 1.5 𝜇𝑚 is the silica particle diameter. The index o and s respectively refer to oil and silica and 

𝜌 and M respectively denote the density and total mass. With 𝜌𝑠 = 2000kg. m−3, 𝜌𝑜 = 778kg. m−3, we 

find with eq. (3) that 𝐶 = 0.86, which matches the value measured optically, and is consistent with an 

emulsion generation limited by coalescence. We thus obtain a collection of Pickering drops that we dilute 

so that they can be pushed one by one in the constricted capillary tube. 

III. Results 

A. General features 
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When a drop flows through the constricted capillary, at each position the relation between pressure 

difference and flowrate is given by 2: 

𝑄 =
1

𝜓
(Δ𝑃 +

2𝛾𝐵

𝜌𝐵
−

2𝛾𝐹

𝜌𝐹
)     (4) 

where 𝑄 is the drop flowrate measured by image analysis and Ψ the hydrodynamic resistance given by eq. 

(1). The indexes B and F respectively refer to the back and the front of the drop and 𝛾 and 𝜌 respectively 

denote the surface tension and radius of curvature. The Laplace pressure resulting from the curvature of the 

capillary of radius 𝑅𝑐𝑎𝑝 (see Fig. 2b) is neglected. 

Both the imposed pressure and Laplace pressure at the back contribute to push the drop forward in the 

contraction and appear with a positive sign in eq. (4). In contrast, the Laplace pressure at the front opposes 

forward motion and decreases the flowrate. The minimum curvature radius of the drop front is reached at 

the center of the contraction, i.e. at position 𝑧 = 0. In addition, it is about 4 times smaller than the curvature 

radius at the back. As a result, at this position, the pressure due to the curvature at the back is small and the 

flowrate is expected to be minimum (see Fig. 3). Therefore, the pressure threshold for clogging corresponds 

to cases where the flow rate becomes zero at the center of the contraction.  

B. Flow of a Pickering drop through the contraction 

In Fig. 5a are displayed different photographs of a particle-laden drop crossing the contraction together 

with the variations of flowrate as a function of the position of its mass center, 𝑧𝐺. Photograph (i) shows the 

drop entering the contraction. The drop surface further expands up to a maximum corresponding to the 

situation of photograph (iii) for which the mass center of the drop is at the center of the contraction, i.e. 

𝑧𝐺 = 0. As previously mentioned, the minimum value for flowrate is reached when the front of the drop is 

at the contraction center (photograph ii), and must be non-zero for the drop to pass through.  

 

Figure 5: Particle-laden drops. a. Views of the key positions of the drop in the contraction. (i) Drop entering 

the contraction. Scale bar: 150µm; (ii) Drop front interface crossing the contraction center, 𝑧𝐹 = 0; (iii) 

Drop mass center in the middle of the contraction, 𝑧𝐺 = 0. b. Drop normalized flowrate as a function of 

the drop mass center position for a particle-laden drop. Symbols refer to experimental data, blue full line 

to computed flowrate with 𝛾𝐵 = 𝛾𝐹 = 𝛾𝑜/𝑤; grey full line to the computed flowrate with 𝛾𝐵 = 0 and 𝛾𝐹 =

𝛾𝑜/𝑤. The inset is a zoom at the minimum of flowrate corresponding to photograph (ii). The drop radius is 

136 µm and the pressure difference 4365 ± 20 𝑃𝑎. 
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The difference of gray shades between the front apex (white) and the rest of the drop (gray) on photograph 

(ii) indicates that a bare oil-water interface forms at the drop front. Photograph (iii) shows that this interface 

remains bare at least until 𝑧𝐺 = 0. As emphasized above, the drop surface is initially almost saturated with 

particles. As soon as the drop enters the contraction, its surface expands resulting in a decrease of the 

particles density at the interface. Referring to the variations of interfacial tension schematized in Fig. 1, all 

these observations indicate that the front part of the drop is exploring situations B to A. Thus, we assume 

that the front interfacial tension is equal to the interfacial tension of a bare oil-water interface γF = γo/w 

during the whole experiment. In contrast, particles concentrate at the back of the drop, and the interfacial 

tension γB is expected to become smaller than γo/w corresponding to an evolution from situation B to 

situation C or D in Fig. 1. 

Figure 5.b. shows the measured drop flowrate 𝑄 as a function of the position of the droplet mass center. 

The flowrate is normalized by the one without droplet (i.e. with water only) at the same pressure difference 

∆𝑃. Here again, the minimum flowrate is observed when the front of the drop is at the center of the 

contraction, corresponding to the case of photograph (ii). The solid lines show the predicted flowrates 

computed using eq. (4). All quantities appearing in eq. (4) are measured, except interfacial tensions. From 

the observed bare drop front, we infer that γF = γo/w. The values of the back interfacial tension is not 

known a priori since the interface enriches with particle, and the two curves correspond respectively to its 

possible lower and upper values : γB = 0 and γB = γo/w. The first value corresponds to a maximal particle 

density at the back and is associated with the onset of buckling (situation C-D of Fig.1). In contrast, a 

constant interfacial tension γo/w is expected if the density remains smaller than its saturation value 

(situation B of Fig.1). As evidenced in Fig. 5a, the experimental curve lies between these two computed 

curves, whatever the droplet position. Therefore we infer that 0 < γB < γo/w at all positions, and in 

particular at the one corresponding to minimum flowrate.  

C. Flow of a surfactant laden drop through the contraction 

We now turn to the experiments performed with surfactant-laden drops. Figure 6.a. presents different 

photographs of a surfactant-laden drop crossing the contraction. Photographs (i), (ii), and (iii) show the 

same situations as in the case of a particle-laden drop previously presented. In contrast to particle-laden 

drops, the surfactants cannot be visualized, hence their surface concentration cannot be inferred from the 

images. Yet, at the back, the concentration is not expected to increase since it is initially saturated, therefore 

𝛾𝐵 = 𝛾𝑐𝑚𝑐. At the front, similarly to particle-laden interfaces, we expect either a constant or decreasing 

surface concentration which results, this time, in an increase of the front interfacial tension, i.e. 𝛾𝑐𝑚𝑐 <

𝛾𝐹 < 𝛾𝑜/𝑤. 
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Figure 6: a. Photographs of the key positions of a surfactant-laden drop at 5 cmc. (i) Drop entering the 

contraction. Scale bar: 150µm; (ii) Drop front interface crossing the contraction center, 𝑧𝐹 = 0; (iii) Drop 

mass center in the middle of the contraction, 𝑧𝐺 = 0. b. Drop normalized flowrate as a function of the drop 

mass center position for a surfactant-laden drop. Symbols refer to experimental data, blue full line to 

computed flowrate with 𝛾𝐵 = 𝛾𝐹 = 𝛾𝑐𝑚𝑐; grey full line to the computed flowrate with 𝛾𝐵 = 𝛾𝑐𝑚𝑐 and 𝛾𝐹 =

𝛾𝑜/𝑤. The drop radius is 125 µm and the pressure difference Δ𝑃 = 1202 ± 20 𝑃𝑎. 

The measured drop flowrate 𝑄 normalized by 𝑄𝑤𝑎𝑡𝑒𝑟 as a function of 𝑧𝐺 is shown in fig. 6b. In this case as 

well, the minimum value for flowrate is reached when the front is at the center of the contraction. The blue 

and gray lines were computed using eq. (4) with respectively 𝛾𝐹 = 𝛾𝑐𝑚𝑐 and 𝛾𝐹 = 𝛾𝑜/𝑤. In both cases 𝛾𝐵 =

𝛾𝑐𝑚𝑐. The experimental data lies between these two extreme situations, confirming the concentration at the 

front does not remain constant but decreases. Interestingly, the experimental minimum flowrate is more 

than twice smaller than the model with both interfacial tensions kept constant. The induced decrease of 

surfactant concentration can therefore be expected to modify the passage time of the drop. 

In the following, we focus on the position of the drop corresponding to the minimum flowrate, which 

conditions the passage of the drop. By adjusting the minimum flow rate computed with eq. (4) to the 

experimental one, we have determined the unknown interfacial tension in each case. More precisely, for 

each ∆𝑃, the back interfacial tension of particle-laden drops was computed from the value of the minimum 

using the relation inferred from eq. (4):  

𝛾𝐵 =  
𝜌𝐵

2
(Ψ𝑄 − ∆𝑃 +

2γo/w

𝜌𝐹
)    (5) 

Similarly, the front interfacial tension of surfactant-laden drops was computed from the flow rate minimum 

with a back interfacial tension 𝛾𝑐𝑚𝑐, i.e.: 

𝛾𝐹 =  
𝜌𝐹

2
(Ψ𝑄 − ∆𝑃 −

2γcmc

𝜌𝐵
)     (6) 

All parameters of eq. (5) and (6) are either known (Ψ, ∆𝑃, γo/w, γcmc) or can be measured by image analysis 

(𝜌𝐵, 𝜌𝐹 and 𝑄).  We have found that, at the center of the contraction, all terms of the differences involved 

in eq. (5) and (6) are at least of a few tenths of ∆𝑃, allowing accurate measurements of surface tensions 

using these equations. Actually, the main error comes from the flowrate term yielding an uncertainty of  

less than 20% on surface tensions. In the following section, w        e discuss the resulting values of surface 

tensions 𝛾𝐵  and 𝛾𝐹 as a function of ∆𝑃 and we suggest a picture of the various transport phenomena at 

stake. 
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IV. Discussion 

We show in this section that the values of interfacial tension determined from the flowrate curves can be 

successfully predicted by considering the processes involved in the creation of concentration gradients of 

the adsorbed species. The first step consists in examining the velocity of these species, i.e. the interfacial 

velocity of the drop.  

A. Water lubrication film and interfacial velocity 

The lubrication film formed when a drop or bubble moves at constant velocity in a cylindrical capillary has 

been first described by Bretherton  for capillary numbers 𝐶𝑎 < 10−3 23. He showed that the film thickness 

only depends on the capillary number and the tube radius. More recently, an empirical law was suggested 

to predict the film thickness at larger capillary numbers 24, which was further modified on the basis of 

theoretical arguments 25. In the present work, the radius of the capillary tube is varying across the 

contraction, resulting in a varying drop velocity and thus in a varying capillary number. However, 

considering the large value of the curvature radius of the capillary, 𝑅𝑐𝑎𝑝 compared to the drop radius, these 

variations are small and can be neglected. Therefore, we use the expression established in 25 for the 

thickness of the lubrication film, yielding at the center of the contraction: 

ℎ = 𝑟𝑐𝑎𝑝(0)
1.34𝐶𝑎2/3

1+3.73𝐶𝑎2/3     (7) 

In the case of particle-laden drops, the lubrication film thickness obtained from eq. (7) ranges from 0.8 to 

1.5μm, i.e. is always larger than the radius of the colloidal particles, ℎ > 𝑑𝑠𝑖𝑙𝑖𝑐𝑎/2. Therefore, we consider 

the particles freely move at the oil-water interface since there is no solid friction between the particles and 

the capillary walls. For surfactant-laden drops, the film thickness obtained with eq. (7) ranges from 0.1 to 

2.7μm. 

The velocity profiles in the drop and in the film are schematized in Fig. 7. Computation of the velocity 𝑈𝑖𝑛𝑡 

of the o/w interface with respect to the capillary tube is detailed in Appendix A. As shown in the Appendix, 

neglecting the contribution to the interfacial velocity of both Marangoni effect and interfacial viscosity 

yields the approximation: 

𝑈𝑖𝑛𝑡 ≈ 2
𝜂𝑜

𝜂𝑤

𝜌𝐹
2ℎ

rcap
3 𝑈𝐹      (8) 
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Figure 7: Schematic representation of the velocity profiles in the lubrication film and in the drop. The 

velocity at the drop interface is denoted 𝑈𝑖𝑛𝑡.  

 

The condition 
𝜌𝐹

2ℎ

𝑟cap
3 ≪ 1 is met in all the investigated experimental conditions and the oil and water 

viscosities are very close. Therefore, from eq. (8), the interfacial velocity 𝑈𝑖𝑛𝑡 is always smaller than the 

front drop velocity 𝑈𝐹 , provided Marangoni effects are negligible. 

In the following, we explain how the transfers of the interfacial material (particles or surfactants) set the 

interfacial tensions measured at the flowrate minimum. In the case of surfactant-laden drops, we measure 

the front surface expansion rate �̇� and show it is the key parameter to discuss the variations of the front 

interfacial tension. In the case of particle-laden drops, we demonstrate that the mechanical balance on 

particles allows a prediction of the back interfacial tension. 

B. Particle-laden drops: mechanical balance 

The different interfacial effects at stake for particle-laden drops are schematically represented in Fig. 8. In 

the previous section, we concluded from the experimental measurements that 𝛾𝐵 < 𝛾𝑜/𝑤, which 

corresponds to a non-zero surface pressure 𝜋(𝑧𝐵) = 𝛾𝑜/𝑤 − 𝛾𝐵 > 0 at the back of the drop. In contrast, the 

interfacial tension at the front remains equal to the oil/water interfacial tension and the surface pressure is 

strictly zero: 𝜋(𝑧𝐹) = 0. Consequently, a surface pressure gradient [𝜋(𝑧𝐹) − 𝜋(𝑧𝐵)]/(𝑧𝐹 − 𝑧𝐵) forms 

along the length (𝑧𝐹 − 𝑧𝐵) of the drop. This gradient is balanced by hydrodynamic friction in the lubrication 

film of thickness ℎ, which yields: 

     𝛾𝐵~𝛾𝑜/𝑤 − 𝜂𝑤(𝑧𝐹 − 𝑧𝐵)
𝑈𝑖𝑛𝑡

ℎ
    (9) 

 

Figure 8: Schematic representation of the particle-laden interface; 𝜋 is the surface pressure (𝜋 = 𝜎zz, the 

surface stress in the principal direction z), h the water film thickness, 𝑈𝑖𝑛𝑡 the interfacial velocity, 𝜂𝑤 the 

water viscosity. The particle density gradient generates a surface pressure gradient along the drop, which 

is balanced by the hydrodynamic friction in the water film. 

Equation (9) provides a measurement of the surface tension at the back of particle-laden drops from the 

experimental values of the interface velocity, which is measured by tracking the particle front at all times. 

This tracking method is based on the contrast difference that can be observed on Fig. 5.a between drop 

areas covered with and free of particles. We have found velocities ranging from 10−2m. s−1 to 0.6m. s−1 

always smaller than the front velocity. In Fig. 9, we compare the resulting value of the back interfacial 
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tension with the one provided by flowrate measurements following eq. (5). The agreement between both 

measurements is excellent. The only varying parameter between each point is the imposed pressure 

difference across the contraction, ∆𝑃, resulting in different drop front velocities 𝑈𝐹. As expected, the back 

interfacial tension decreases with increasing imposed pressure gradient. We emphasize Fig. 9 validates the 

assumptions made to obtain the thickness of the lubrication film since this thickness is used to compute the 

ordinate values. Neglecting the variations of both the capillary radius and drop velocity is therefore 

justified. 

         

Figure 9: Interfacial tension at the back of a particle-laden drop computed with eq. (9) as a function of the 

one computed with eq. (5) at the minimum flowrate.  Error bars result from uncertainty on interfacial 

velocity measurements (vertical), and flowrate measurements (horizontal). The only varying parameter is 

the imposed pressure difference across the contraction, ∆𝑃.  

C. Surfactant-laden drops: surfactant transfers 

We have systematically measured the front surface tension of surfactant-laden drops at the flow rate 

minimum using eq. (6). As expected, it depends on the imposed pressure difference, ∆𝑃. The surfactant 

interfacial concentration is expected to decrease as the drop surface expands: hence, at the front of the drop, 

for each ∆𝑃 we have measured the surface expansion rate �̇� from image analysis. The expansion rate is 

defined as the relative surface variation with time and we show in Appendix B its value at the center of the 

contraction can be simply expressed as: 

�̇� =
1

𝑆𝐹

𝑑𝑆𝐹

𝑑𝑡
=

𝑈𝐹

𝜌𝐹
      (10) 

The measured front surface tension is shown as a function of �̇� for different surfactant concentrations above 

the cmc. 
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Figure 10: Front surface tension of surfactant-laden droplets normalized by the surface tension of bare oil-

water interface as a function of the expansion rate of the drop at the front and for different surfactant 

concentrations: 1cmc (green circles), 5cmc (black circles) and 10cmc (red circles). Surface tension is 

computed following eq. (6) at the position corresponding to the minimum flowrate. The expansion rate is 

computed with eq. (B5) at the same position. 

Strikingly, no significant influence of surfactant concentration is observed on the front surface tension. At 

small expansion rates, 𝛾𝐹 is constant and equal to 𝛾𝑐𝑚𝑐. Above �̇� ~ 103𝑠−1 , it steeply increases and further 

tends toward values close to 𝛾𝑜/𝑤 at the largest expansion rates, evidencing a significant decrease in 

surfactant concentration at the front surface of the drop. The corresponding surface concentrations Γ𝐹/Γ∞ 

computed using eq. (2) are shown in Fig. 11.  

 

 

Figure 11: Surface concentration normalized by its value at the cmc computed from the data of Fig. 10 

using eq. (2) for different surfactant bulk concentrations (same as Fig. 10). The solid line is a guide to the 

eye. 
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We now discuss the different effects influencing the surface concentration of surfactants at the front of the 

drop. The decrease of surface concentration resulting from surface expansion is opposed by both a 

Marangoni interfacial flow and the feeding of surfactants from the bulk to the depleted interface. Actually, 

as the drop moves forward, surfactants and micelles from the bulk are driven towards the drop front by an 

advection/diffusion process, and further adsorb within a finite time at the o/w interface. The limiting step 

of this process can either result from the time needed by surfactants to diffuse from the bulk to the interface, 

or from the finite adsorption time. The latter is expected for charged surfactants as CTAB 26, since charge 

interactions induce an energy barrier for adsorption at the interface. We demonstrate in Appendix C that, 

whatever the nature of the process limiting adsorption of surfactants from the bulk, the decrease of surface 

concentration would occur above a threshold value of surface expansion. Consistently, a threshold value is 

evidenced by the data of Fig. 11. However, if diffusion was the limiting step, the threshold should depend 

on surfactant bulk concentration and in particular be zero at a concentration of cmc, as stated in Appendix 

C. Clearly, the experimental data shows no significant effect of bulk concentration on the variations of 

surface concentration. Similarly, if the threshold did result from a finite adsorption time, then its value 

would depend on surfactant concentration 26. Therefore, we conclude that it is not the adsorption of 

surfactants from the bulk that sets the threshold value above which surface concentration decreases. 

We suggest that the observed threshold rather reflects the influence of a Marangoni flow. In Appendix A, 

we show the Marangoni number can be of the order of unity at the smallest values of front velocity. 

Therefore, at these velocity values, a Marangoni flow can oppose the decrease of surface concentration. We 

describe this effect by considering the front velocity is decreased by the Marangoni velocity 𝑈𝑀𝑎 and we 

define an effective value for the expansion rate in which the velocity is 𝑈𝐹 − 𝑈𝑀𝑎 instead of 𝑈𝐹 as in eq. 

(10). Using the Marangoni velocity derived in Appendix A yields for the effective expansion rate: 

  

     �̇�𝑒𝑓𝑓 =
𝑈𝐹

𝜌𝐹

(1 −
𝜕𝛾

𝜕𝑧

𝜌𝐹

𝜂𝑤

1

𝑈𝐹
1/3

𝑈𝑐
2/3  )   (11) 

Where 𝑈𝑐 is the capillary velocity. Equation (11)  is written at the center of the contraction at which 𝑟𝑐𝑎𝑝 =

𝜌𝐹. 

At small drop velocities, the Marangoni flow can cancel the effects of surface expansion whereas it becomes 

negligible at large drop velocities. The crossover velocity between the two regimes corresponds to a zero 

effective expansion rate, i.e. to a threshold of the expansion rate: 

�̇�𝑡ℎ = (
1

𝜂𝑤

𝜕𝛾

𝜕𝑧
)

3
𝜌𝐹

2

𝑈𝑐
2      (12) 

Using the same numerical values as in Appendix A, we find �̇�𝑡ℎ ≈ 8 × 103s−1. This threshold value is in 

very good agreement with the one evidenced in Fig. 11. 

Above the threshold value, the decrease of the surfactant concentration results from a balance of the 

different effects respectively decreasing and increasing surface concentration. Its complete description 

should therefore take into account both the diffusion and adsorption processes, and is beyond the scope of 

the present work. Nevertheless, the experimental master curve describing the variations of surface 
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concentration with surface expansion allows an accurate prediction of the passage of the drops, as shown 

in what follows. 

D. Passage time 

In light of what precedes, we now focus on the consequences of the induced concentration gradients on the 

passage time of a surfactant-laden drop. No significant effect is expected on the clogging threshold since 

concentrations gradients only appear for large enough expansion rates, i.e. not for vanishing velocities. 

However, for large rates resulting in large variations of the front surface tension, we expect an increase of 

the passage time of the drop. 

We arbitrarily define a passage time as the time needed for the mass center of the drop to move from 𝑧1 to 

𝑧2, where 𝑧1 is the position along the z-axis at which the drop starts losing its spherical shape, and 𝑧2 the 

position at which the spherical shape is recovered. The passage time can be directly measured in the 

experiment and, since we fully describe the surface tension variations at the surface of the drop, it can also 

be computed using: 

𝑡𝑝 = ∫
𝜋𝑟2(𝑧)

𝑄(𝑧)
𝑑𝑧

𝑧2

𝑧1
      (13) 

Where 𝑄(𝑧) is the drop flow rate predicted using eq. (5) in which 𝛾𝐵 = 𝛾𝑐𝑚𝑐 and 𝛾𝐹 is computed at each 

position from the expansion rate, using an empirical expression determined from the curve of Fig. 10. Since 

the expansion rate itself depends on the flowrate, an equation verified by 𝑄 is obtained, which is further 

solved numerically and injected in eq. (13), itself numerically integrated. 

Measurements of 𝑡𝑝 are shown in Fig. 12 as a function of the imposed pressure normalized by the clogging 

pressure, together with the numerically integrated passage time given by eq. (13). They are compared with 

the passage times of constant surface tension drops respectively without surfactant (𝛾𝐹 = 𝛾𝑜/𝑤) and with a 

saturated interface (𝛾𝐹 = 𝛾𝑐𝑚𝑐). The pressure clogging threshold corresponds to the pressure value for 

which 𝑡𝑝 becomes infinite. As expected, the threshold is strongly decreased by the addition of surfactant, 

and unperturbed by considering concentration gradients effect. The experimental passage times are well 

described by the predicted ones, emphasizing the relevance of the simple model we have used. They are 

slightly larger than the passage times obtained by considering a constant surface tension and the effect is 

enhanced close to the clogging threshold. For instance, the time is almost twice larger for a pressure 

difference twice larger than the clogging threshold. Although moderate, the effect is expected to be 

amplified for drops passing in multiple contractions. Therefore, induced surface concentration gradients 

need to be considered in order to fully predict the flows of surface-laden droplets in porous media. 
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Figure 12: Passage time of a surfactant-laden drop as a function of the imposed pressure difference 

normalized by the clogging pressure given by eq. (5) with 𝑄 = 0. The time is the one needed by the drop to 

cross the contraction, i.e. to move from position 𝑧1 to 𝑧2 (see Fig. 2). Experimental data (symbols) is shown 

with the ones predicted for a constant surface tension at the front, respectively 𝛾𝑐𝑚𝑐 (red line) and 𝛾𝑜𝑤 

(blue line). The predicted crossing time when the front surface tension is modified by the surface expansion 

is shown as a black line.  

IV. Conclusion 

We report experiments performed with particle-laden and surfactant-laden drops passing through a 

contraction under an imposed pressure, resulting in a large surface expansion of the drop. We have shown 

that both natures of drops have a qualitatively similar behavior when crossing the contraction, with a 

decrease in the concentration of adsorbed species at their fronts. The resulting variations in surface tension 

as a function of flow rate we measure are in excellent agreement with the ones we predict. In particular, we 

show that above a threshold velocity value, a Marangoni flow opposes the decrease of surfactant 

concentration at the front interface due to surface expansion. We demonstrate the induced surface tension 

gradients result in larger passage times through the contraction. Our results provide the first quantitative 

experimental study of the concentration gradients induced by drop deformation in a constriction and sheds 

new light on the transport in porous media of droplets with adsorbed species at their surfaces. 

 

Appendix A: interfacial velocity 

In this appendix, we first establish the velocity profiles in the oil drop and water lubrication film, and further 

provide an expression for the velocity 𝑈𝑖𝑛𝑡 at the o/w interface, in the frame of the capillary tube. We use 

the notations introduced in Fig. 7. Because the problem is axisymmetric, the velocity 𝑢(𝑟) at a given 

position z along the z-axis is given by: 

For 0 < 𝑟 < 𝑟𝑐𝑎𝑝 − ℎ 

𝑢(𝑟) = 𝑎o𝑟2 + 𝑏o      (A1) 
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For 𝑟𝑐𝑎𝑝 − ℎ < 𝑟 < 𝑟𝑐𝑎𝑝 

𝑢(𝑟) = 𝑎𝑤(𝑟cap − 𝑟)
2
     (A2) 

 

where the indexes o and w refer respectively to oil and water, and 𝑎𝑜, 𝑏𝑜 and 𝑎𝑤 are constants. The velocity 

satisfies the no-slip boundary condition at the capillary wall, 𝑢(𝑟cap) = 0. 

From continuity of the velocities, one obtains:  

𝑎𝑤 =
𝑏o+𝑎oℎ2−2𝑎oℎ𝑟cap+𝑎o𝑟cap

2

ℎ2      (A3) 

The water and oil flowrates are therefore respectively given by: 

𝑄𝑤 =
2

3
(𝑏o𝜋𝑟cap + 𝑎o𝜋𝑟cap

3 )ℎ + 𝑂(ℎ)2    (A4) 

𝑄𝑜 = 𝑏o𝜋(ℎ − 𝑟cap)2 +
1

2
𝑎𝑜𝜋(ℎ − 𝑟cap)4     (A5) 

As a result, 𝑄𝑤 𝑄0⁄ ∝ ℎ 𝑟𝑐𝑎𝑝⁄  and the water flowrate is negligible compared to the oil flowrate. In the 

following we neglect its contribution to the flowrate, i.e. we consider 𝑄 ≈ 𝑄𝑜. 

Stress continuity at the interface yields: 

𝜂𝑤
𝜕𝑢

𝜕𝑟
](𝑟𝑐𝑎𝑝−ℎ)

−  = 𝜂𝑜
𝜕𝑢

𝜕𝑟
]

(𝑟𝑐𝑎𝑝−ℎ)
+ +

𝜕𝛾

𝜕𝑧
     (A6) 

−2𝑎𝑤ℎηw =
𝜕𝛾

𝜕𝑧
+ 2𝑎𝑜(rcap − ℎ)ηo     (A7) 

Using eq. (A2) to (A7) and expanding in powers of ℎ 𝑟𝑐𝑎𝑝⁄ , one obtains: 

𝑈𝑖𝑛𝑡 = 𝑢(𝑟𝑐𝑎𝑝 − ℎ) = −
1

2ηw

𝜕𝛾

𝜕𝑧
ℎ +

2𝑄ηo

𝜋𝑟cap
3 ηw

ℎ + 𝑂(ℎ)2  (A8) 

The first term of the right hand term is the Marangoni velocity. The amplitude of the Marangoni effect is 

measured by the Marangoni number defined as the ratio of the Marangoni and front velocity of the drop, 

yielding: 

𝑀𝑎 =
𝜕𝛾

𝜕𝑧

𝑟𝑐𝑎𝑝

ηw

1

𝑈𝐹
1 3⁄

𝑈𝑐
2 3⁄        (A9) 

Where, for the sake of simplicity, we have used the expression established by Bretherton for the thickness 

of the lubrication film, ℎ = 𝑟𝑐𝑎𝑝𝐶𝑎2 3⁄ , rather than eq. (7) and differing with eq. (7) by less than 15% for 

the largest capillary number. The capillary number is expressed as 𝐶𝑎 = 𝑈𝐹 𝑈𝑐⁄  with 𝑈𝑐 = 𝛾 ηw⁄  the 

capillary velocity. 

If L is the length over which the interfacial tension gradient extends,  
𝜕𝛾

𝜕𝑧
≈ (𝛾𝑜𝑤 − 𝛾𝑐𝑚𝑐) 𝐿⁄ . With 𝐿 =

500µm and 𝑈𝐹 ranging from 10−3 to 1m. 𝑠−1, we obtain Marangoni numbers ranging from 0.1 to 1.  
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Interfacial viscosity effects have been neglected. For a surface viscosity 𝜂𝑠, they are measured by the 

Boussinesq number that compares the surface stress ~ηs𝑈𝑖𝑛𝑡 𝜌𝐹(𝑧𝐹 − 𝑧𝐵)⁄  with the viscous stress in the 

lubrication film ~ηw𝑈𝑖𝑛𝑡 ℎ⁄  and is therefore given by: 

𝐵𝑜 =
𝜂𝑠ℎ

ηw𝜌𝐹(𝑧𝐹−𝑧𝐵)
       (A10) 

With 𝜂𝑠 = 4.5 × 10−5Pa. m. s 27, the maximum value of 𝐵𝑜 is 10−2 in our experiments, confirming that 

the interfacial viscous stress is negligible.  

 

Appendix B: surfactant expansion rate 

Here we compute the surface expansion rate at the front of the drop, as it passes through the contraction. 

Its general expression is the following: 

�̇� =
1

𝑆𝐹

𝑑𝑆𝐹

𝑑𝑡
        (B1) 

where 𝑆𝐹 is the surface of the front spherical cap given by: 

𝑆𝐹 = ∫ 2𝜋𝜌𝐹
2sin𝜃𝑑𝜃 = 2𝜋𝜌𝐹

2 (
1−𝑠𝑖𝑛𝛼

cos2 𝛼
)

𝜋

2
−𝛼

0
    (B2) 

When the front of the drop moves forward over a distance 𝑑𝑧 = 𝑧𝐹(𝑡 + 𝑑𝑡) − 𝑧𝐹(𝑡), its surface increase 

results from two contributions, as represented in Fig. 13. The first one corresponds to the expansion of the 

front spherical cap (red dotted line in Fig. 13), and the second one, to the supplementary surface spreading 

along the capillary wall (green line). The total surface variation is therefore given by: 

𝑑𝑆𝐹 = 𝑑𝑧
𝜕

𝜕𝑧
(2𝜋𝜌𝐹

2(𝑧)
1−𝑠𝑖𝑛𝛼(𝑧)

cos2 𝛼(𝑧)
) + 2𝜋𝜌𝐹(𝑧)

𝑑𝑧−𝑈𝑧
𝑑𝑧

𝑈𝐹

𝑐𝑜𝑠𝛼(𝑧)
  (B3) 

Where 𝛼 is the angle between the tangent to the drop surface at position 𝑧𝐹 and the horizontal axis. 

 

Fig. 13: Schematic representation of the drop at two successive instants in the constriction showing how it 

surface expands. 



 

19 

 

Since 𝑈𝑖𝑛𝑡 < 𝑈𝐹, the surface expansion rate can be approximated as: 

�̇� =

𝜕

𝜕𝑧
(2𝜋𝜌𝐹

2(𝑧)
1−𝑠𝑖𝑛𝛼(𝑧)

cos2 𝛼(𝑧)
)+

2𝜋𝜌𝐹(𝑧)

cos 𝛼

2𝜋𝜌𝐹
2(𝑧)

1−𝑠𝑖𝑛𝛼(𝑧)

cos2 𝛼(𝑧)

𝑈𝐹     (B4) 

In practice, all geometrical parameters in eq. (B4) can be measured by image analysis, as well as the drop 

front velocity 𝑈𝐹, allowing measurements of the surface expansion rate at the drop front. The resulting 

expansion rates measured at the center of the contraction are shown in Fig. 14 for surfactant-laden drops 

and at different concentrations of surfactants in the aqueous solution.  

 

Fig. 14: Surface expansion rate of surfactant-laden droplets as a function of their front velocity, computed 

following eq. (B4) for surfactant concentrations of 1cmc (green symbols), 5cmc (black symbols) and 10cmc 

(red symbols). Full line represents eq. (B5) with 𝜌𝐹 = 25 𝜇𝑚. 

The expansion rate increases linearly with the front velocity of the drop, as a result of the negligible 

derivative term in eq. (B4). Since at the center of the contraction 𝛼 = 0, we have found the expansion rate 

at that point is well described by the simple expression (shown in full line in Fig. 14): 

�̇� =
𝑈𝐹

𝜌𝐹
      (B5) 

 

Appendix C: Critical expansion rates for a transfer limited by micelle diffusion or surfactant 

adsorption 

First, we show here that, if the transfer of surfactants from the bulk to the surface was limited by the 

diffusion process, then the variations of surface concentration with the expansion rate would depend on the 

surfactant concentration. A similar calculation is reported in the literature but for concentrations below the 

cmc 28. Here, we consider concentrations that are larger than the cmc; it is therefore the advection/diffusion 

of micelles that can limit the transfer to the interface since the concentration of free surfactant remains 

constant. In a 1D description, in the frame of the interface, the equation verified by the surfactants 

aggregated in micelles, of concentration 𝑐𝑀 = 𝑐 − 𝑐𝑐𝑚𝑐 is : 
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𝑢𝑧
𝜕𝑐𝑀

𝜕𝑧
+ 𝐷𝑀

𝜕2𝑐𝑀

𝜕𝑧2 = 0     (C1) 

 

Where 𝑢𝑧 is the velocity of water, and hence of the micelles in the frame of the interface and 𝐷𝑀 their 

diffusion coefficient. Note that in this frame 𝑢𝑧 = −𝐴�̇� . The solution to eq. (C1) is (see 29 for the complete 

demonstration): 

𝑐𝑀(𝑧) = 𝐶 ∫ 𝑒−�̇�𝑦2 2⁄ 𝐷𝑀𝑑𝑦
𝑧

0
+ 𝐵 = 𝑐𝑆 +

𝑐∞−𝑐𝑆

∫ 𝑒−�̇�𝑦2/2𝐷𝑀𝑑𝑦
∞

0

∫ 𝑒−�̇�𝑦2 2⁄ 𝐷𝑀𝑑𝑦
𝑧

0
  (C2) 

Where 𝑐∞ and 𝑐𝑠 are respectively the surfactants- in - micelle concentration far away from the drop and at 

its interface. The flux of micelles to the drop surface is therefore: 

𝐽 = 𝐷𝑀
𝜕𝑐𝑀

𝜕𝑧
= 𝐷𝑀

𝑐∞ −𝑐𝑆

∫ 𝑒−�̇�𝑦2/2𝐷𝑀𝑑𝑦
∞

0

= 𝐷𝑀(𝑐∞ − 𝑐𝑆)2√
�̇�

2𝜋𝐷𝑀
    (C3) 

 

In stationary conditions, the flux balances the decrease rate in surfactant induced by surface expansion Γ𝐹�̇�, 

yielding: 

𝑐∞ − 𝑐𝑠 = Γ𝐹√
𝜋�̇�

2𝐷𝑚
          (C4) 

As long as 𝑐𝑠 remains positive, there are micelles in the vicinity of the interface, and the interfacial tension 

remains almost constant. The critical value of the expansion rate above which Γ𝐹 is expected to decrease 

corresponds thus to zero micelle concentration close to the surface, i.e. 𝑐𝑠 = 0, therefore: 

𝐴�̇� =
2𝐷𝑚

𝜋
 (

𝑐−𝑐𝑐𝑚𝑐

Γ𝑐𝑚𝑐
)

2
       (C5) 

With 𝐷𝑚 = 10−9m2. s−1, the critical value of the expansion rate is 𝐴�̇� = 1.3 × 103s−1 for 𝑐 = 5𝑐𝑐𝑚𝑐 and 

𝐴�̇� = 6.7 × 103s−1 for 𝑐 = 10𝑐𝑐𝑚𝑐. 

Second, we show that if the transfer of surfactants from the bulk to the surface was limited by surfactant 

adsorption, it would also depend on surfactant concentration.  

The expansion of the drop surface decreases the surfactant concentration at the front, Γ𝐹, below its initial 

value Γ𝑐𝑚𝑐 whereas the adsorption from the bulk within a finite adsorption time 𝜏 keeps opposing this 

decrease. In this picture, the rate of variation of the surface concentration is given by: 

dΓ𝐹

dt
= −�̇�Γ𝐹 +

Γ𝑐𝑚𝑐−Γ𝐹

𝜏
     (C6) 

Assuming a stationary state is reached yields the following expression for the surface concentration: 

     Γ𝐹 =
Γ𝑐𝑚𝑐

1+�̇�𝜏
       (C7) 
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According to eq. (C7), the threshold value of the expansion rate above which Γ𝐹 is expected to decrease is 

the inverse of the adsorption time, 1 𝜏⁄ . Although not accurately measured, this time has been shown to 

depend on both concentration and salt content 26. 
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