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2 Université Franois Rabelais de Tours, 37200 TOURS, France
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Abstract. During the last decade, several approaches have been pro-
posed to address detection and recognition problems, by using graphs to
represent the content of images. Graph comparison is a key task in those
approaches and usually is performed by means of graph matching tech-
niques, which aim to find correspondences between elements of graphs.
Graph matching algorithms are highly influenced by cost functions be-
tween nodes or edges. In this perspective, we propose an original ap-
proach to learn the matching cost functions between graphs’ nodes. Our
method is based on the combination of distance vectors associated with
node signatures and an SVM classifier, which is used to learn discrim-
inative node dissimilarities. Experimental results on different datasets
compared to a learning-free method are promising.
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1 Introduction

In the pattern recognition domain, we can represent objects using two methods:
statistical or structural [4]. On the later, objects are represented by a data struc-
ture (e.g., graphs, trees), which encodes their components and relationships; and
on the former, objects are represented by means of feature vectors. Most methods
for classification and retrieval in the literature are limited to statistical repre-
sentations [17]. However, structural representation are more powerful, as the
object components and their relations are described in a single formalism [18].
Graphs are one of the most used structural representations. Unfortunately, graph
comparison suffers from high complexity, often an NP-hard problem requiring
exponential time and space to find the optimal solution [5].

One of the widely used method for graph matching is the graph edit dis-
tance (GED). GED is an error-tolerant graph matching paradigm that defines
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the similarity of two graphs by the minimum number of edit operations neces-
sary to transform one graph into another [3]. A sequence of edit operations that
transforms one graph into another is called edit path between two graphs. To
quantify the modifications implied by an edit path, a cost function is defined
to measure the changes proposed by each edit operation. Consequently, we can
define the edit distance between graphs as the edit path with minimum cost.

The possible edit operations are: node substitution, edge substitution, node
deletion, edge deletion, node insertion, and edge insertion. The cost function is of
first interest and can change the problem being solved. In [1,2], a particular cost
function for the GED is introduced, and it was shown that under this cost func-
tion, the GED computation is equivalent to the maximum common subgraph
problem. Neuhaus and Bunke [14], in turn, showed that if each elementary op-
eration satisfies the criteria of a metric distance (separability, symmetry, and
triangular inequality) then the GED is also a metric.

Usually, cost functions are manually designed and are domain-dependent.
Domain-dependent cost functions can be tuned by learning weights associated
with them. In Table 1, published papers dealing with edit cost learning are
tabulated. Two criteria are optimized in the literature, the matching accuracy
between graph pairs or an error rate on a classification task (classification level).
In [13], learning schemes are applied on the GED problem while in [11,6], other
matching problems are addressed. In [11], the learning strategy is unsupervised
as the ground truth is not available. In another research venue, different opti-
mization algorithms are used. In [12], Self-Organizing Maps (SOMs) are used to
cluster substitution costs in such a way that the node similarity of graphs from
the same class is increased, whereas the node similarity of graphs from different
classes is decreased. In [13], Expectation Maximization algorithm (EM) is used
for the same purpose. An assumption is made on attribute types. In [7], the
learning problem is mapped to a regression problem and a structured support
vector machine (SSVM) is used to minimize it. In [8], a method to learn scalar
values for the insertion and deletion costs on nodes and edges is proposed. An
extension to substitution costs is presented in [9]. The contribution presented
in [16] is the nearest work to our proposal. In that work, the node assignment
is represented as a vector of 24 features. These numerical features are extracted
from a node-to-node cost matrix that is used for the original matching process.
Then, the assignments derived from exact graph edit distance computation is
used as ground truth. On this basis, each node assignment computed is labeled
as correct or incorrect. This set of labeled assignments is used to train an SVM
endowed with a Gaussian kernel in order to classify the assignments computed
by the approximation as correct or incorrect. This work operates at the matching
level. All prior works rely on predefined cost functions adapted to fit an objec-
tive of matching accuracy. Little research has been carried out to automatically
design generic cost functions in a classification context.

In this paper, we propose to learn a discriminative cost function between
nodes with no restriction on graph types nor on labels for a classification task. On
a training set of graphs, a feature vector is extracted from each node of each graph
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Table 1. Graph matching learning approaches.

Ref. Graph matching
problem

Supervised Criterion Optimization method

[12] GED Yes Recognition
rate

SOM

[13] GED Yes Recognition
rate

EM

[8,9] GED Yes Matching
accuracy

Quadratic programming

[6] Other Yes Matching
accuracy

Bundle

[7] Other Yes Matching
accuracy

SSVM

[11] Other No Matching
accuracy

Bundle

thanks to a node signature that describes local information in graphs. Node
dissimilarity vectors are obtained by pairwise comparison of the feature vectors.
Node dissimilarity vectors are labeled according to the node pair belonging to
graphs of the same class or not. On this basis, an SVM classifier is trained. At
the decision stage, two graphs are compared, a new node pair is given as an
input of the classifier, and the class membership probability is outputted. These
adapted costs are used to fill a node-to-node similarity matrix. Based on these
learned matching costs, we approximate the matching graph problem as a Linear
Sum Assignment Problem (LSAP) between the nodes of two graphs. The LSAP
aims at finding the maximum weight matching between the elements of two sets
and this problem can be solved by the Hungarian algorithm [10] in O(n3) time.

The paper is organized as follow: Section 2 presents our approach for local
description of graphs, and the proposed approaches to populate the cost matrix
for the Hungarian algorithm. Section 3 details the datasets and the adopted
experimental protocol, as well as presents the results and discussions about them.
Finally, Section 4 is devoted to our conclusions and perspectives for future work.

2 Proposed Approach

In this section, we present our proposal to resolve the graph matching problem
as a bipartite graph matching using local information.

2.1 Local Description

In this work, we use node signatures to obtain local descriptions of graphs.
In order to define the signature, we use all information of the graph and the
node. Our node signature is represented by the node attributes, node degree,
attributes of incident edges, and degrees of the nodes connected to the edges.
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Given a general graph G = (V,E), we can define the node signature extraction
process and representation, respectively, as:

Γ (G) = {γ(n)|∀n ∈ V }

γ(n) = {αGn , θGn , ∆G
n , Ω

G
n }

where αGn is the attributes of the node n, θGn is the degree of node n, ∆G
n is the

set of degrees of adjacent nodes to n, and ΩGn is a set of attributes of the incident
edges of n.

2.2 HEOM Distance

One of our approaches to perform graph matching consists on finding the min-
imum distance to transform the node signatures from one graph into the node
signatures from another graph. To calculate the distance between two node sig-
natures, we need a distance metric capable of dealing with numeric and sym-
bolic attributes. We selected the Heterogeneous Euclidean Overlap Metric [19]
(HEOM) and we provided an adaptation for our graph local description.

The HEOM distance is defined as:

HEOM(i, j) =

√√√√ n∑
a=0

δ(ia, ja)2, (1)

where a is each attribute of the vector, and δ(ia, ja) is defined as:

δ(ia, ja) =


1 if ia or ja is missing,

0 if a is symbolic and ia = ja,

1 if a is symbolic and ia 6= ja,
|ia−ja|
rangea

if a is numeric.

(2)

In our approach, we define the distance between two node signatures as
follow. Let A = (Va, Ea) and B = (Vb, Eb) be two graphs and na ∈ Va and
nb ∈ Vb be two nodes from these graphs. Let γ(na) and γ(nb) be the signature
of these nodes, that is:

γ(na) = {αAna
, θAna

, ∆A
na
, ΩAna

}
and

γ(nb) = {αBnb
, θBnb

, ∆B
nb
, ΩBnb

}.
The distance ε between two node signatures is:

ε(γ(na), γ(nb)) = HEOM(αAna
, αBnb

) +HEOM(θAna
, θBnb

)+

HEOM(∆A
na
, ∆B

nb
) +

∑|ΩA
na
|

i=1 HEOM(ΩAna
(i), ΩBnb

(i))

|ΩAna
|

(3)
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Fig. 1. Proposed SVM approach to compute the edit cost matrix.

2.3 SVM-based Node Dissimilarity Learning

We propose an SVM approach to learn the graph edit distance between two
graphs. In this approach, we first define a distance vector ε′ between two node
signatures. Function ε′ is derivated from ε, but instead of summing up the dis-
tance related to all structures, the function considers each structure distance
score as a value of a bin of the vector. This distance vector is composed of the
HEOM distance between each structure of the node signature, i.e., the distance
between the node attribute, node degree, degrees of the nodes connected to the
edges, and attributes of incident edges are components of the vector, i.e.,

ε′(γ(na), γ(nb)) = [HEOM(γ(na)i, γ(nb)i)] ,

∀i ∈ {0, · · · , |γ(n)|} | γ(n)i is a component of γ(n).

To each distance vector ε′, a label is assigned. These labels guide the SVM
learning process. We propose the following formulation to assign labels to dis-
tance vectors. Let Y = {y1, y2, . . . , yl} be the set of l labels associated with
graphs. In our formulation, denominated multi-class, distance vectors, which are
associated with node signatures extracted from graphs of the same class (say yi),
are labeled as yi. Otherwise, a novel label yl+1 is used, representing that the dis-
tance vectors were computed from node signatures belonging to graphs belonging
to different classes.

Figure 1 illustrates the main steps of our approach. Given a set of train-
ing graphs (step A in the figure), we first extract the node signatures from all
graphs (B), and compute the pairwise distance vectors (C). We then use the la-
beling procedure described above to assign labels to distance vectors defined by
node signatures extracted from graphs of the training set and use these labeled
vectors to train an SVM classifier (D).
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2.4 Graph Classification

At testing stage, each one of the graphs from the test set (E) has its node sig-
natures extracted (F). Again, distance vectors are computed, now considering
node signatures from the test and from the training set (G). With the distance
vectors, we can project them into the learned feature space and obtain the prob-
ability of a test sample that belongs to the training set classes considering the
SVM hyperplane of separation (H). These probabilities are used to populate a
cost matrix for each graph in the training set (I), in such a way that, for each
node signature from the test graph (row) and each node signature from the train-
ing graph (column), we create a matrix of probabilities for each combination of
test and training graphs. This matrix is later used in the Hungarian algorithm.
As the resulting cost matrices encodes probabilities, we compute the maximum
cost path using the Hungarian algorithm instead of the minimum. The test sam-
ple classification is based on the k-nearest neighbor (kNN) graphs found in the
training set, where graph similarity is defined by the Hungarian algorithm.

3 Experimental Results

In this section, we describe the datasets used in the experiments, we present
our experimental protocol, and how our method was evaluated. At the end, we
present our results and discuss them.

3.1 Datasets

In our paper, we perform experiments in three labeled datasets from the IAM
graph database [15]: Letter, Mutagenicity, and GREC.

The Letter database compromises 15 classes of distorted letter drawings.
Each letter is represented by a graph, in which the nodes are ending points of
lines, and edges are the lines connecting ending points. The attributes of the
node are its position. This dataset has three sub-datasets, considering different
distortions (low distortion, medium distortion, and a high distortion).

Mutagenicity is a database of 2 classes representing molecular compounds.
In this database, the nodes are the atoms and the edges the valence of the linkage.

GREC database consists of symbols from architectural and electronic draw-
ings represented as graphs. Ending points are represented as nodes and lines and
arcs are the edges connecting these ending points. It is composed of 22 classes.

3.2 Experimental Protocol

Considering that the complexity and computational time to calculate the dis-
tance vectors for the SVM method is soaring, we decide to perform preliminary
experiments where we randomly selected two graphs of each class from the train-
ing set to be our training, and for our test, we selected 10% of the testing graphs
from each class. As we are selecting randomly the training and testing sets, we
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need to perform more experiments to obtain an average result, to avoid any
bias a unique experiment selecting training and testing sets can have. Thus,
we performed each experiments 5 times to obtain our results. To evaluate our
approach, we present the mean accuracy score and the standard deviation of a
k -NN classifier (k = 3). Table 2 presents detailed information about the datasets.

Table 2. Informations about the datasets.

Datasets
Letter-LOW Letter-MED Letter-HIGH Mutagenicity GREC

# graphs 750 750 750 1500 286
# classes 15 15 15 2 22
# graphs per class 50 50 50 830/670 13
# graphs in learning 30 30 30 4 44
# distance vectors ≈ 10, 000 ≈ 10, 000 ≈ 10, 000 ≈ 14, 000 ≈ 130, 000
# graphs in testing 75 75 75 129/104 44

3.3 Results

In our first experiments, to provide a baseline, we performed the graph matching
using the HEOM distance function between the node signatures to populate the
cost matrix. We also populated the cost matrix with random values between 0
and 1 for comparison. Table 3 shows these results for the chosen datasets. The
HEOM distance approach shows improvement over a simple random selection of
values.

Table 3. Accuracy results for HEOM distance and random population of the cost
matrix in the graph matching problem (in %).

Approach
Datasets

Letter-LOW Letter-MED Letter-HIGH Mutagenicity GREC

Random 0.53 ± 0.73 1.60 ± 2.19 1.60 ± 1.12 54.85 ± 4.22 1.36 ± 2.03
HEOM distance 40.53 ± 11.72 15.73 ± 3.70 10.93 ± 3.70 49.44 ± 10.69 52.27 ± 7.19

As we can see in Table 3, the HEOM distance presents a better result than
the random assignment of weights, except for the Mutagenicity dataset, which
is the only dataset with two classes. In this case, the obtained results are sim-
ilar, considering the standard deviation of the executions (±4.22 for Random
approach, and ±10.69 for the HEOM approach).

Next, we run experiments using the proposed multi-class SVM approach
to compare with the results obtained using the HEOM distance in the cost
matrix. We used default parameters for the SVM for the training step (RBF
kernel, C = 0). We also present results of experiments in which we normalize
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the distance vector, using min-max (normalizing between 0 and 1) and zscore
(normalization using the mean and standard deviation) normalizations. Table 4
shows the mean accuracy of the experiments made.

Table 4. Mean accuracy (in %) for the HEOM distance and SVM multi-class approach
in the graph matching problem. The best results for each dataset are show in bold.

Datasets
Letter-LOW Letter-MED Letter-HIGH Mutagenicity GREC

HEOM
distance 40.53 ± 11.72 15.73 ± 3.70 10.93 ± 3.70 49.44 ± 10.69 52.27 ± 7.19

SVM
Multi-class

30.67 ± 5.50 28.00 ± 9.80 18.93 ± 5.77 71.24 ± 29.50 18.64 ± 6.89
min-max 33.33 ± 7.12 20.27 ± 6.69 14.40 ± 5.02 63.26 ± 15.61 20.00 ± 7.43
zscore 37.87 ± 9.83 21.87 ± 1.52 20.27 ± 8.56 64.12 ± 7.68 30.91 ± 2.59

Table 4 shows us that the SVM approach is promising, obtaining better
results for three of the five datasets considered. The improvement in the Mu-
tagenicity dataset was above 20 percentage points from the HEOM distance
baseline. As for the other cases, the Letter-LOW dataset had similar results for
the HEOM distance and SVM approach (standard deviation of the HEOM is
±11.72 and for the SVM is ±9.83). The GREC dataset was the only dataset
with a distant results from the HEOM approach. We discuss that it is because
the dataset has more classes than the others, so its “different” class contains
more distance vectors combining node signatures of different classes. With this
imbalanced distribution, the “different” class shadows the other classes in the
SVM classification.

Table 4 also shows that a normalization step can help separate the classes
in the SVM, being successful in improving the result of three of five approaches
used, specially the zscore normalization, that considers the mean and standard
deviation of the vectors.

To better understand our results, we also calculated the accuracy of the SVM
classification for the same training used in it. Our experiments shows that the
“different” class does not help the learning, especially in the datasets with more
classes, as this “different” class overlook the other classes, preventing the classi-
fication as the correct class. It also shows the necessity of a bigger training and
a validation set to tune the parameters of the SVM. Figure 2 shows a confusion
matrix of a classification of the training data in the Letter-LOW dataset.

To improve our results, we propose to ignore the “different” class in the
training set. Table 5 shows the accuracy for this new proposal.

As we can see in Table 5, our proposed modifications improved the results ob-
tained in our experimental protocol. The dataset Letter-LOW achieved the best
result when we do not consider the “different” class in the training step, avoid-
ing misclassification as “different” class. With this, we show that our proposed
approach to learn the cost to match nodes are very promising.
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Fig. 2. Classification of the training set for the Letter LOW dataset.

Table 5. Accuracy scores for four datasets (in %).

Modification Multi-class
Datasets

Letter-LOW Letter-MED Letter-HIGH GREC

Without
“different”

class

37.87 ± 5.88 34.13 ± 9.78 29.07 ± 4.36 38.18 ± 8.86
min-max 30.13 ± 6.34 30.13 ± 9.31 27.47 ± 7.92 35.45 ± 2.03
zscore 44.80 ± 5.94 25.87 ± 0.73 29.07 ± 5.99 41.82 ± 7.11

4 Conclusions

In this paper, we presented an original approach to learn the costs to match
nodes belonging to different graphs. These costs are later used to compute a dis-
similarity measurement between graphs. The proposed learning scheme combines
a node-signature-based distance vector and an SVM classifier to produce a cost
matrix, based on which the Hungarian algorithm computes graph similarities.
Performed experiments considered the graph classification problem, using k-NN
classifiers built based on graph similarities. Promising results were observed for
widely used graph datasets. These results suggest that our approach can also be
extended to use similar methods based on local vectorial embeddings and can
be exploited to compute probabilities as estimators of matching costs.

For future work, we want to perform experiments considering all training
and testing sets to compare with our results presented in this paper, and also
make a complete study on the minimum training set necessary to achieve a good
performance not only in classification, but also in retrieval tasks.

Acknowledgments. Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific interest group hosted by
Inria and including CNRS, RENATER, and several Universities, as well as other
organizations (see https://www.grid5000.fr).
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