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Abstract

The k-nearest neighbors classi�er has been widely used to classify graphs in pattern recog-

nition. An unknown graph is classi�ed by comparing it to all the graphs in the training set and

then assigning it the class to which the majority of the nearest neighbors belong. When the

size of the database is large, the search of k-nearest neighbors can be very time consuming.

On this basis, researchers proposed optimization techniques to speed up the search for the

nearest neighbors. However, to the best of our knowledge, all the existing works compared the

unknown graph to each train graph separately and thus none of them considered �nding the

k nearest graphs from a query as a single problem. In this paper, we de�ne a new problem

called multi graph edit distance to which k-nearest neighbor belongs. As a �rst algorithm to

solve this problem, we take advantage of a recent exact branch-and-bound graph edit distance

approach in order to speed up the classi�cation stage. We extend this algorithm by consider-

ing all the search spaces needed for the dissimilarity computation between the unknown and

the training graphs as a single search space. Results showed that this approach drastically

outperformed the original approach under limited time constraints. Moreover, the proposed

approach outperformed fast graph edit distance algorithms in terms of average execution time

especially when the number of graphs is tremendous.

1 Introduction

Graphs are frequently used in various �elds of computer science, since they constitute a universal
modeling tool for the description of structured data. The handled objects and their relations are
described in a single and human-readable formalism. Hence, tools for supervised graphs classi�-
cation and graph mining are required in many applications such as pattern recognition (Riesen,
2015a), chemical components analysis (Gaüzère et al., 2012) and structured data retrieval (Kooli
and Belaïd (2016)).

Graph classi�cation consists in assigning a class or a category to an unknown graph. To do
so, the unknown graph is compared to the set of training graphs. The graph classi�cation can be
achieved directly in graph space (G) or indirectly in vector space (Rn) by means of an embedding
method. Methods operating in a vector space can also be split into two parts whether they rely
on explicit (φ : G → Rn) (Gaüzère et al., 2012) or implicit (k :< G,G >→ R) graph embedding
(Riesen et al., 2010). Concerning the explicit graph embedding methods, some features (vertex
degree, labels occurrence histograms,etc.) are extracted from the graph. Hence, the graph is
projected in a Euclidean space. The choice of su�cient features is not trivial. Moreover, the
number of such features has to be very large and thus the dimensionality issues occur. Regarding
the implicit approaches, an explicit data representation is of secondary interest. That is, rather
than de�ning individual representations for each graph, the graph at hand is represented by pairwise
comparisons only. The graphs are implicitly projected in a Euclidean space without de�ning the
function φ. However, such approaches su�er from their computationally intensive cost when the
dataset is large. This paper deals with paradigms that operate directly on the graph space and
can thus capture more structural distortions.

One of the most well-known and used approaches to compute a distance (dissimilarity) between
two graphs taking distortion into account is the graph edit distance (GED). The GED is achieved
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by �nding a set of graph edit operations: insertions, deletions and substitutions of vertices as well
as edges in order to transform a graph into another with the minimal cost. The traditional ap-
proach to graph edit distance-based pattern recognition system is given by the k-Nearest Neighbor
classi�cation (kNN) (Riesen (2015a)). This classi�er is simple in the sense that only a metric, or a
distance function, that measures the dissimilarity between graphs has to be de�ned. Afterwards,
the unknown graph is compared to all the graphs in the training set. Finally, the unknown graph
is assigned to the most common class among its kNN measured by the distance function.

Finding the exact kNN can be done through the calculation of an exact GED (such as in
Abu-Aisheh et al. (2015); Neuhaus et al. (2006a)). This approach has an exponential complexity
in function of the size of compared graphs and a linear complexity in function of the number of
training graphs. Moreover, its complexity increases especially when the number of graphs in the
learning set is tremendous. Two approaches could be conducted to accelerate the process of the
kNN. One can cluster and structure the search space (e.g., Wang (2012)) or use graph prototypes
so as to avoid comparing a test graph with all the graphs in the training set (e.g., Raveaux et al.
(2011)). Another approach could be to �nd a fast GED algorithm. Recently, lots of approximate
GED methods have been proposed in the literature (Riesen (2009); Fischer et al. (2015); Bougleux
et al. (2017)) to cite a few of them. However, in these approaches all the comparisons are performed
independently regardless to the �nal kNN objective and the obtained solutions are not exact. In this
paper, we propose to reformulate the kNN problem under the multi graph edit distance (MGED)
paradigm. During the classi�cation of a test graph, all the GED computations whose objective is
to classify an unknown graph Gi are merged to obtain a more global problem. As a �rst algorithm
to solve the MGED problem, we take advantage of a recent exact branch-and-bound (BnB) GED
approach, calledDF in (Abu-Aisheh et al., 2015). The knowledge about the global MGED problem
can be considered as the merging of the search spaces to prune the global search space associated
to all sub-GED problems.

This paper is organized as follows: In Section 2, the kNN classi�er and the GED problem are
presented. In Section 3, we spot light on the fast GED metrics approaches in the literature that
are currently used in a classi�cation context. In Section 4, our proposal is detailed. First, a formal
de�nition of the MGED problem is given. Second, a �rst algorithm to solve the MGED problem
is put forward. This method is an extension of an existing BnB GED strategy. The purpose of
the new algorithm is to speed up the kNN search in graph space. The parameters' impact of
the algorithm is then discussed. Section 5 is dedicated to the experiments, protocol and results
that show the e�ciency of the approach in terms of accuracy and computation time. Section 6 is
devoted to conclusions and perspectives.

2 Problem statement

Our proposal lies in accelerating the classi�cation process of the kNN classi�er in graph space.
Thus, in this section, we formally de�ne each of the kNN classi�er (Bhatia and Vandana (2010))
and the GED problem (Riesen (2015a)).

2.1 The k-nearest neighbors problem

The objective of the kNN classi�er is to classify an unknown object by assigning it a class which
represents the majority of its nearest neighbors. Let the objects be graphs and let D be the set
of graphs and let C be the set of classes. Given a graph training set TrS = {(Gj , cj)}Mj=1, where
Gj ∈ D is a graph and cj ∈ C is the class of the graph. The kNN classi�er induces from TrS a
mapping function f : G → C which assigns a class to an unknown graph from the test set TeS.
The 1-nearest neighbor problem can be de�ned as follows:

De�nition 1 1-Nearest Neighbors Problem

(G∗, c∗) = arg min
(Gj ,cj)∈TrS

d(Gi, Gj) ∀Gi ∈ TeS (1)

Where d(Gi, Gj) is the metric used to calculate a dissimilarity between Gi and Gj . In De�nition
1, the number of calls to the dissimilarity function is equal toM , whereM is the size of the training
set. To extend De�nition 1 to k-nearest neighbors, we introduce K, the set of the kNN from a
query graph Gi ∈ TeS. Let K = {(G1, c1), · · · , (Gj , cj), · · · , (Gk, ck)} be a set of graphs along
with their class labels with (Gj , cj) ∈ TrS. The k-Nearest Neighbors problem can be de�ned by:
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De�nition 2 k-Nearest Neighbors Problem

K = arg sort
(Gj ,cj)∈TrS

(d(Gi, Gj), k) ∀Gi ∈ TeS (2)

Where sort is a function that performs an ascending sort of d(Gi, Gj) values. k is the number of
retained values to choose the number of nearest neighbors of Gi. To exploit the De�nition 2 in a
classi�cation context, a voting operator has to be de�ned. The max voting operator is a function
τ : K → C de�ned by:

De�nition 3 Max Voting Operator :τ

c∗j = argmax
cj∈C

mcj (K) (3)

Where mcj is a function that counts the number of observations that fall into each class cj .
The kNN classi�er has been widely used in the literature. The use of this classi�er is very simple

since it is a non-parametric technique and thus it does not need knowledge about the distribution
of classes. Moreover, when the metric is de�ned, the kNN classi�er can provide an explanation
of the classi�cation results and thus the kNN classi�er has an advantage over the other classi�ers
which are considered as black-box models (Dreiseitl and Ohno-Machado (2002)). In (Cover and
Hart, 2006), it has been shown that when there are enough training patterns, the classi�cation
error of the kNN classi�er is smaller than twice the Bayes error.

2.2 The graph edit distance problem

In graph space, the similarity or dissimilarity between two graphs requires the computation and the
evaluation of the best matching between them. Since exact isomorphism rarely occurs in pattern
analysis applications, the matching process must be error-tolerant, i.e., it must tolerate di�erences
on the topology and/or its labeling. In this context, the most well-known paradigm in the literature
is the graph edit distance (GED) (Riesen, 2015a). In the GED, the graph matching process and
the dissimilarity computation are linked through the introduction of a set of graph edit operations.
Each edit operation (i.e., substitution, deletion and insertion of vertices and edges) is characterized
by a cost, and the dissimilarity measure is the total cost of the least expensive set of operations
that transform one graph into another one.

Formally saying, the GED between two attributed graphs Gi and Gj is de�ned as follows:

De�nition 4 Graph Edit Distance

dλmin
(Gi, Gj) = min

λ∈Γ(Gi,Gj)

∑
o∈λ

c(o) (4)

where c(o) denotes the cost function measuring the strength of an edit operation o and Γ(Gi, Gj)
denotes the set of all the edit paths transforming Gi into Gj . The exact correspondence is one
of the correspondences that obtains the minimum cost (i.e., dλmin(Gi, Gj)). The GED problem
formulated in De�nition 4 has been proven to be NP-Hard in (Zeng et al., 2009). As mentioned in
Section 2.1, when the number of graphs in the training set is large, the kNN classi�er becomes a
time-consuming process. In fact, the number of calls to the GED solver grows linearly in function
of the training set size. Moreover, the GED problem cannot be solved optimally in polynomial
time. Consequently, many researchers have focused their research on designing fast KNN classi�ers
on top of fast GED solvers. Thus, in the next section, we explore the relatively fast GED methods
proposed as a dissimilarity measure that are usually used when classifying graphs using the kNN
classi�er.

3 State of the art: GED approaches as a dissimilarity mea-

sure to classify graphs using kNN neighbors

To propose fast GED algorithms that help in speeding up the classi�cation process, researchers
switched from exact to approximate GED methods.
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To overcome the bottleneck of the best �rst BnB algorithm referred to as A∗ in (Neuhaus et al.,
2006a), a recent GED algorithm, referred to as DF, was put forward in (Abu-Aisheh et al., 2015) to
reduce the memory consumption and also the computation time. This was done using a di�erent
exploration strategy (i.e., depth-�rst instead of best-�rst). Furthermore, the unfruitful nodes in
the search tree are pruned by a lower and upper bounds strategy. This algorithm was transformed
to anytime DF in (Abu-Aisheh et al., 2016) thanks to the time constraints where the user can stop
the algorithm at a speci�c t and output the encountered solutions.

Beam-Search (BS ) in (Riesen (2009)) has been put forward to reduce the complexity of A∗.
The purpose of BS is to prune the search tree via a parameter that keeps the x most promising
partial edit paths. The assignment problem in (Riesen, 2009) was reformulated as �nding an exact
matching in a complete bipartite graph in order to reduce the quadratic assignment problem (of
GED computation) to an instance of a linear sum assignment problem. This method was then
sped up in (Serratosa (2014, 2015)). In the fast BP in (Serratosa (2014)), referred to as FBP, the
cost matrix is composed of only one quadrant whereas in (Serratosa (2015)) two square matrices
are de�ned depending on the order of the involved graphs. These approaches take local rather
than global relationships into consideration. To go beyond the local structure problem, few works
have been proposed (Riesen et al. (2014); Ferrer et al. (2015); Carletti et al. (2015)), to name a
few of them. However, the computation time of these approaches is higher than BP and FBP.
Recently, two approaches based on Integer Projected Fixed Point and Graduated Non-Convexity
and Concavity methods have been proposed in (Bougleux et al., 2017).

All these approaches are relatively fast when we intend to compare a single graph pair. However,
in a classi�cation context, especially when the number of graphs is large, the sum of the number of
calls to the GED solvers leads to an expensive computational cost. To the best of our knowledge,
none of the previous works dealt with the problem of classifying a test graph as a single and global
graph comparison problem. In a preliminary work in Abu-Aisheh et al. (2017), a new problem
referred to as multiple GED (MGED) was de�ned. This approach was limited to k = 1. In this
paper, we extend this problem to kMGED by generalizing the problem to k ≥ 1. We then propose
a �rst algorithm to solve the kMGED problem. Finally, in this paper a stronger experimental
study is provided.

4 Our proposal: Solving the kMGED problem

When using the kNN classi�er to classify graphs, the comparison of Gi and each Gj is achieved
independently. That is, the result of a prior comparison cannot help in solving the next comparison.
To tackle this problem, we propose to de�ne the MGED problem along with a dedicated algorithm.

4.1 A new problem: Reformulating the kNN search as the kMGED
problem

The MGED can be seen as merging of the two problems formulated in De�nitions 2 and 4. First, let
us recall that Γ(Gi, G) = {λ1

Gi,G
, λ2
Gi,G

, · · · , λpGi,G
} is the set of all possible matchings between Gi

and G. The number of possible matchings p is exponential with respect to the number of vertices
in Gi and G. Now, let Li = {(c1,Γ(Gi, G1)), · · · , (cj ,Γ(Gi, Gj)), · · · , (cM ,Γ(Gi, GM ))} be the set
of all possible matchings betweenGi and each graph Gj ∈ TrS where c∗ is the class of the graph G∗.
The set Li can be expanded by developing the Γ sets. Li = {(c1, λ1

Gi,G1
), (c1, λ

2
Gi,G1

), · · · , (c1, λpGi,G1
), · · · , cj , λ1

Gi,Gj
),

(cj , λ
2
Gi,Gj

), · · · , (cj , λqGi,Gj
), · · · , (cM , λ1

Gi,GM
), (cM , λ

2
Gi,GM

), · · · ,
(cM , λ

r
Gi,GM

)}. The MGED problem can be de�ned as follows:

De�nition 5 Multi Graph Edit Distance Problem

(G∗, c∗) = arg min
(c,λGi,G

)∈L

∑
o∈λGi,G

c(o) ∀Gi ∈ TeS (5)

The former De�nition 5 can be seen as searching the minimum matching among all the matchings
between one query graph Gi and a graph collection. In De�nition 2, the MGED problem can be
extended to kNN by using the sort function. The kMGED problem can be de�ned as follows:
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De�nition 6 k-Multi Graph Edit Distance Problem

K = arg sort
λGi,G

∈L
(

∑
o∈λGi,G

c(o), k) ∀Gi ∈ TeS (6)

where sort is a function that performs an ascending sort. From the list of elements outputted
by the arg sort function, only the k best elements are conserved with respect to the following
uniqueness quanti�cation constraint:

∃!(Gj , cj) ∈ K (7)

where K is the set of graphs along with their class labels with (Gj , cj) ∈ TrS. Constraint 7 ensures
that the pair (Gj , cj) cannot appear twice. That is, only the best feasible solutions of each GED
computation (Gi and Gj) is selected and thus (Gj , cj) appears only once. In the worst case, the
time complexity of solving the problem of kMGED is exponential in the number of vertices of the
graphs Gi and Gj multiplied by the number of graphs in TrS. In other words, the complexity in
the worst case equals to the complexity of the kNN classi�er (see De�nition 2) multiplied by the
complexity of the GED problem (see De�nition 4).

4.2 Our proposal: One-tree depth �rst algorithm to solve the kMGED
problem

In this section, we put forward a �rst algorithm to solve the kMGED problem de�ned in De�nition
6. As a �nal application, the algorithm uses the kNN to classify a query graph Gi with a single
search space.

4.2.1 Algorithm description

Algorithm 1 depicts the main steps of the proposed algorithm, called One-Tree-kMGED. Lines 1
to 3 correspond to the initialization step. The GED solver is called for the Gi and Gj (Line 5).
The obtained distance d is then added to the list Dmin at the location k + 1 (line 7). The list
of distances is sorted in ascending order while keeping track of IDs (Line8). In Line 9, the upper
bound UB is updated and is given the value of the kth element saved in the distance list Dmin
(i.e., Dmin[k]). After all the aforementioned steps, the algorithm One-Tree-kMGED returns the
graphs along with their associated class label (GIDmin[k], cIDmin[k]).

Algorithm 1 One-Tree-kMGED Algorithm
Input: The set TrS: {(G1, c1), · · · , (GM , cM )}, the unknown graph Gi and the parameter k
Output: the k nearest graphs to Gi from the set TrS with their associated class

1: Dmin = [+∞, · · · ,+∞] . A distance of k + 1 elements
2: IDmin = [+∞, · · · ,+∞] . A graph ID list
3: UB = +∞ . The initial upper bound
4: for j = 1 to M do
5: d = GED (Gi,Gj ,UB)
6: Dmin[k + 1] = d
7: IDmin[k + 1] = j
8: (IDmin,Dmin) = sortDmin(IDmin,Dmin) . sort in an ascending order
9: UB = Dmin[k]

10: end for
11: Return (GIDmin[1], cIDmin[1]), · · · , (GIDmin[k], cIDmin[k])

4.2.2 Used GED solver

In line 5 of Algorithm 1, any GED solver that takes an upper bound as an input is suitable. We
propose to use the depth �rst algorithm DF in (Abu-Aisheh et al., 2015) since this algorithm
outperformed A∗ in terms of time and memory consumption in addition to its ability to prune the
search space thanks to its upper and lower bounds. DF consists of two main steps: Preprocessing
and branch-and-bound. The preprocessing step consists in speeding up the calculations through the
construction of the vertex-to-vertex assignment cost matrix (the same applies on edges). Once the
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preprocessing stage is �nished. The solution space is organized as a search tree. The exploration
of the search tree is performed in a depth-�rst way. Bounding is performed when �nding a leaf
node with a cost smaller than UB. Pruning is performed by cutting nodes with a larger cost
than UB. A node p has a cost computed as follows: lb(p) = g(p) + h(p) where g(p) is the cost
of the partial edit path and h(p) is an estimation of the future cost to obtain a complete edit
path. If lb(p) is not a lower bound, DF can miss optimal solutions. lb(p) is a lower bound if it
does not overestimate the optimal cost of a complete edit path. Consequently, lb(p) is a lower
bound if h(p) does not overestimate the remaining cost of unmatched elements. h(p) is computed
as follows: Let us assume that a partial edit path at a position in the search tree is given, and
let the number of unprocessed (unmatched) vertices of the �rst graph Gi and second graph Gj
be ni and nj , respectively. To estimate the costs of the remaining optimal edit operations, we
accumulate the costs of the min(ni, nj) least expensive node substitutions. The linear assignment
problem should be solved to achieve this goal. However, to be fast, the minimization problem
is not solved. Instead, we consider that each substitution is cost-free. Consequently, the least
expensive node substitutions are always equal to zero. Any of the selected substitutions is always
cheaper than a deletion or an insertion operation. Next, we accumulate the costs of max(0, ni−nj)
node deletions and max(0, nj − ni) node insertions. The unprocessed edges of both graphs are
handled analogously and independently of the vertices. Obviously, this procedure allows multiple
substitutions involving the same vertex or edge and, therefore, it possibly represents an invalid way
to edit the remaining part of Gi into the remaining part of Gj . But, the estimated cost certainly
constitutes a lower bound of the exact cost. This fast lower bound is used to make the algorithm
as fast as possible and to spend the available time exploring and pruning the global search tree
rather than computing the lower bound.

In order to simply illustrate One-Tree-kMGED, Figure 1 highlights its idea for k = 1. Given
a query graph Gi and a learning database TrS, the idea is to consider each search tree Sij of the
d(Gi,Gj) as a sub-tree of the global tree dedicated to Gi and referred to as Tij . For instance, in
Figure 1, one can see that the �rst UB found while exploring the sub-tree Si1 of GED(Gi,G1) is 2.
UB is then used as an initial UB of the sub-tree Si2 of GED(Gi,G2) and so on. Such an operation
helps in pruning the sub-trees as fast as possible while searching for the nearest neighbor of Gi.

Figure 1: one-Tree-kMGED when k = 1. Given a query graph Gi and graphs in the training set,
the problems GED(Gi,G1), GED(Gi,G2) and GED(Gi,G3) are considered as sub-trees of the global
tree (TGi). The sub-tree of GED(Gi,Gj) is pruned thanks to UB that is found via GED(Gi,G1).

4.2.3 Complexity and time constraint

In the worst case, the time complexity of one-Tree-kMGED is exponential in the number of vertices
of the involved graphs. This case occurs when the �rst UB does not help in pruning the rest of
the search tree and thus all the TrS subtrees need to be explored. One should notice that the
complexity in the worst case equals to the complexity of the naive way illustrated in De�nition 2.

Conceptually speaking, DF and One-Tree-kMGED provide the same neighbors. This statement
is true under one assumption that is the time limited to solve each graph comparison is in�nite.
Another way to view this assumption is to say that the time limit is never reached by the solvers. On
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the other hand, One-Tree-kMGED does not output the distance of each graph pair (Gq,Gi). The
GED computation of each (Gq,Gi) is stopped as soon as the solver proved that no better solutions
than the global upper bound UB could be found. In such a case, the UB value is returned as an
output of the given graph comparison. The only distances that are guaranteed to be outputted are
the GED values of the kNN. The global UB could accelerate the classi�cation time and improve
the classi�cation rate.

4.3 Theoretical discussion around the parameters impacts

As depicted in Algorithm 1, one-Tree-kMGED has 3 parameters: the unknown graph Gi, the
training set TrS and the parameter k for the selection of the nearest neighbors. In this section, a
discussion about the impact of Trs and k is provided

4.3.1 Parameter k

The parameter k has an important impact on the classi�cation rate of kNN. This impact was deeply
studied in (Batista and Silva (2009)). The authors showed that on 4 di�erent types of datasets the
classi�cation rate increases as k increases up to a maximum between k=5 and k=11. Suppose we
have a classi�er with only 2 classes, using less neighbors (e.g., k=1) could lead to over�tting. This
phenomena will be also demonstrated in the experiments.

Regarding One-Tree-kMGED, having a big value of k, could have a big impact not only on the
classi�cation rate but also on the execution time. The reason is that, the upper bound will be
the kth one in the {dmin} list and not the best upper bound found so far. The kth upper bound
is higher than the �rst upper bound. Consequently, the kth upper bound is likely less capable of
cutting the search tree. Such a fact could slow down the algorithm depending on the di�culty of
the classi�cation problems.

4.3.2 Ordering the graphs in the training set

In Algorithm 1, the graphs in TrS were supposed to be already ordered. However, the question
arises: Which order of training graphs should be taken into account in order to prune the search
tree as soon as possible?

In this article, we propose 3 di�erent orderings. Two of them depend on the class cj of each
graph Gj in TrS. Formally saying:

TrSCACO = {(Gn, cn)}Mn=1 = sortcj (TrS = {(Gj , cj)}Mj=1)

s.t. cn < cn+1 ∀n ∈ [1, · · · ,M − 1]
(8)

TrSSGPCO = {(Gn, cn)}Mn=1 = modcj (TrS = {(Gj , cj)}Mj=1)

s.t.cn = cj mod(card(C)) ∀j ∈ [1, · · · ,M ]
(9)

TrSRO = {(Gn, cn)}Mn=1 = random(TrS = {(Gj , cj)}Mj=1) (10)

where TrS∗∗∗∗ is TrS with a di�erent order. Let us suppose that we have 3 classes, C = {1, 2, 3}.
The �rst ordering technique we propose is called Class-After-Class-Order (CACO) reordering (see
Eq.8). In this ordering technique, all the graphs whose class is 1 are put �rst in TrSCACO, then
the graphs whose class is 2 and so on. This approach might not lead to a fruitful pruning because
if an unknown graph belongs to Class N which is put at the end of TrSCACO, then its search tree
would have so many nodes, the upper bound would be relatively big and the execution time would
be long.

The second technique based on classes is called Single-Graph-Per-Class-Order (SGPCO) (see
Eq.9). The Single-Graph-Per-Class assures to insert a graph whose class is 1 in TrSSGPCO �rst
(c1 = 1), then a graph whose class is 2 (c2 = 2), then a graph from 3 (c3 = 3), then a graph from
class 1 (c4 = 1) and so on. Compared to the �rst reordering approach, this one is ideal in the sense
that the distribution of graphs is homogeneous.

Another technique that is not based on classes is called Random-Order (RO) (see Eq.10). The
idea is to randomly reorder the graphs in TrS, this approach is better than Class-After-Class-
Order, however, it may not e�ciently prune the search tree as Single-Graph-Per-Class because for
instance a random reordering could put 3 graphs successively whose class is the same.

In the experiments section, a study around the reordering of graphs in TrS is conducted.
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5 Protocol and experiments

This section is dedicated to the protocol and experiments that show the interest of One-Tree-
kMGED in a graph classi�cation context.

5.1 Selected datasets

In the experiments, 6 datasets (GREC, Protein, Mutagenicity, Fingerprint and Webpage) from the
IAM repository (Riesen, 2008) and House-Hotel from the Tarragona repository (Moreno-García
et al., 2016) are selected. GREC contains graphs of rather small size with continuous attributes on
vertices and edges which play an important role in the matching process. MUTA is representative
of graph matching problems where graphs have only symbolic attributed and the number of the
train graphs is 1500 which is the largest in IAM. Protein contains numeric attributes on each
vertex as well as a string sequence that is used to represent the amino acid sequence. Webpage has
the biggest graphs in IAM where the maximum number of vertices is 785. Webpage has numeric
values on both vertices and edges. Fingerprint has only attributes on edges. Finally, House-Hotel
has 60-size feature vector using Context Shape on vertices and the distance between two points on
edges.

Table 1 synthesizes the characteristics of each of the selected datasets in terms of the number
of graphs in both train and test sets, the average and maximum number of vertices and edges and
the attributes on both of them.

Table 1: The characteristics of the datasets included in the experiments.

Dataset GREC Protein Muta Fingerprint Webpage House-
Hotel

#train
graphs

286 200 1500 378 780 71

#test
graphs

528 200 2337 1532 780 70

vertices 11.5 32.6 30.3 5.38 186.04 30
edges 12.2 30.8 79 8.8 104.03 62.1
Max ver-
tices

25 40 71 26 785 30

Max edges 30 149 112 48 524 79
Vertex
labels

x,y coor-
dinates

Type
and
amino
acid se-
quences

Chemical
symbol

None Word's fre-
quency

60 size fea-
ture

Edge labels Line
type

Type
and
length

Valence Orientation Section la-
bel

Distance

Each dataset has speci�c edit cost functions that de�ne how the insertion, deletion and substi-
tution are achieved (Riesen, 2015b). In most of the datasets, two non-negative meta parameters
are associated: (τvertex and τedge) where τvertex denotes a vertex deletion or insertion costs whereas
τedge denotes an edge deletion or insertion costs. A third meta parameter α is integrated to con-
trol whether the edit operation cost on the vertices or on the edges is more important. Table 2
demonstrates the cost functions of each of the included datasets as well as their meta parameters.

Table 2: The cost functions and meta parameters of the datasets.

Dataset GREC Muta Protein FingerprintWebpage House-
Hotel

τvertex 90 11 11 0.7 2 3
τedge 15 1.1 1 0.5 2 3
α 0.5 0.25 0.75 0.75 0.5 0.5
Vertex sub-
stitution
function

Extended
eu-
clidean
distance

Dirac
function

Extended
string
edit
distance

Absolute
value

Dirac
function

Dirac
function

Edge sub-
stitution
function

Dirac
function

Dirac
function

Dirac
function

Absolute
value

Absolute
Value

Dirac
function

Reference
of cost
functions

Riesen
(2009)

Riesen
(2009)

Riesen
(2009)

Riesen
(2009)

Riesen
(2009)

Moreno-
García
et al.
(2016)
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5.2 Chosen graph matching methods (coupled with classical KNN)

To compare our global approach with the classical way to use kNN with graphs, we select di�erent
exact and approximate GED algorithms.

On the exact method side, we chose the depth-�rst GED algorithm from (Abu-Aisheh et al.,
2015) since it outperforms the A∗ algorithm (Riesen et al., 2007) in terms of the running time and
memory consumption.

On the approximate side, we included the beam-search (BS ) algorithm with two di�erent val-
ues BS-1 (i.e., the greedy algorithm) and BS-100. We also chose the bipartite matching algorithm
(BP) (Riesen, 2009) as it has been shown to be one of the most e�cient approximate algorithms
so far. In addition, we selected a fast version of BP (Serratosa, 2014), referred to as FBP in the
literature. In our implemented version of FBP, the three restrictions on the edit costs were not
included (Serratosa, 2015). Finally, we picked a set-based approach based on the Hausdor� match-
ing (Fischer et al., 2015). Unlike other methods, this algorithm is unable to output a matching.
Table 3 summarizes the chosen methods.

The lower bound of each of the branch-and-bound methods included in the experiments (i.e.,
DF, BS-1 and BS-100 ) is the same one used in one-Tree-kMGED, see Section 4.2.2.

Table 3: Methods included in the experiments.

Acronym Reference Details
one-Tree-kMGED This paper First algorithm to solve the

kMGED
DF Abu-Aisheh

et al. (2015)
Depth-First GED algorithm

BS-1 and BS-100 Neuhaus et al.
(2006b)

Beam-search with the size of
the open path stack limited to
1 and 100, respectively

BP Riesen (2009) The bipartite GM
FBP Serratosa (2015) Fast BP
H Fischer et al.

(2015)
A lower bound algorithm
based on the Hausdor� dis-
tance

5.3 Environment and Constraints

The experiments were conducted on a computer with a 24-core Intel i5 processor at 2.10GHz and
16 GB of memory. The time constraint used for all the datasets is �xed to 500 milliseconds (ms) by
dissimilarity computation that is the maximum time needed by BP and FBP to output a solution.
This way ensures that BP and FBP could solve any instance. On this basis, any GED algorithm
that needs more than 500 ms is stopped and the best answer found so far is outputted. Note that
One-Tree-kMGED and DF are exact algorithms without time constraints.

In order to study the in�uence of the training graphs order on One-Tree-kMGED, the 3 di�erent
reordering ways discussed in Section 4.3.2 are integrated. Note that for the Class-After-Class-Order
(CACO), only one reordering way is integrated. This reordering is the same as the one in the initial
�les of the IAM repository (Riesen and Bunke, 2009).

As for the single-graph-per-class ordering (SGPCO) where the order of graphs is homogeneous,
the order of classes is selected according to the order of the classes given in the initial �les of the
IAM repository. Thus, the �rst graph given in the initial �le is chosen �rst, then the �rst graph of
the second class and so on.

Concerning the random ordering (RO), 4 di�erent random orders are generated because we are
interested in testing the impact of di�erent random orders on One-Tree-kMGED.

5.4 Results

This section is 4-fold. First One-Tree-kMGED is compared to the classical approaches cited in
Table 3. Second, the evolution of the upper bound and the average time per interval is tracked.
Third, the study of the reordering techniques mentioned in Section 4.3.2 is conducted. Last but
not least, the impact of varying the number of graphs in the training set and the parameter k is
depicted.
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5.4.1 Comparison with the classical approaches

In Table 4, the results achieved on all the datasets are presented. Note that the computation
time corresponds to the average time needed per dissimilarity computation in milliseconds (ms).
Moreover, in this experiment, k was �xed to 1.

The results show that on all the datasets, one-Tree-kMGED was always faster than the classical
DF approach. It also improved the classi�cation rate of DF on both Protein and Muta. one-Tree-
kMGED could improve UB while moving from one comparison to another. As a consequence, it
pruned unfruitful parts of the global search tree and found smaller distances. A better minimization
of the GED or the MGED problems does not always lead to a higher classi�cation rate but it is
more probable to �nd signi�cant neighbors. When comparing one-Tree-kMGED to BP, one can see
that one-Tree-kMGED was 4.2 times faster (on GREC), 3.6 times faster (on Muta) and 9.5 times
faster (on WebPage). On the other hand, on Fingerprint and House-Hotel, the speed results of the
two methods were quite similar. This is due to the small number of graphs in these datasets and
thus the advantage of using prior UB in one-Tree-kMGED cannot be fully revealed. Moreover, on
House-Hotel, BS-1 was the fastest. House-Hotel has easy graphs to classify (with only 2 classes)
and that is why all the methods obtained 98.5% as a classi�cation rate. Another interesting
remark is that one-Tree-kMGED succeeded in improving the classi�cation rate on Muta. However,
on Protein, it was less accurate than BP. This is due to the number of train graphs which is 1500
on Muta and 200 on Protein as depicted in Table 1. On MUTA, one-Tree-kMGED was able to
better minimize the sum of the costs of edit operations than BP. Despite the fact that BS-1 was
faster than one-Tree-kMGED on Protein, the accuracy of BS-1 was lower. As a general conclusion,
one-Tree-kMGED was the fastest algorithm, except on Protein and CMU where FBP won. This
point is explained by the fact that the number of train graphs in both of them was quite small so
that the interest of merging all sub-problems into a unique one is not useful, see Table 1. Thus,
the search tree of one-Tree-kMGED corresponding to each Gi is relatively small when compared
to the trees of the other datasets. one-Tree-kMGED has less chance/time to prune o� the search
tree and thus fast approximate methods like FBP could be faster. One could also see that the
speed gap between one-Tree-kMGED and approximate methods such as BP and FBP increases
when the size of graphs and the number of train graphs increases, as it is demonstrated on Muta
and WebPage.

5.5 The evolution of the upper bound

We deeply studied what happens during the classi�cation of test graphs using one-Tree-kMGED.
Thus, �rst, we took three di�erent graph queries (that were part of Table 1) from GREC, Muta
and Fingerrint, respectively. Figure 5 depicts the upper bound improvement at the end of each
comparison DF (Gi, Gj) where Gj ∈ TrS on the 3 datasets (see line 5 in Algorithm 1). The settings
are as follows: the order is RO and k = 1. One can see that improving UB happens frequently
in the �rst few milliseconds, however, after a certain time, UB stays longer time without being
changed or with a small gap between the current UB and the new one.

5.5.1 The evolution of the average execution time

For the same classi�cation problems illustrated in Figure 5 and under the same settings, we ana-
lyze the evolution (during di�erent intervals) of the time needed to compare each pair of graphs
while exploring the search tree. Figure 9 illustrates the results on GREC, Muta and Fingerprint,
respectively. We can see that the �rst distance computation on GREC and Muta needed approx-
imately 400 ms while the other comparisons needed less time. This shows that the UBs were
fruitful in pruning the search tree. We could also notice that the average execution time of the
intermediate comparisons on Muta is higher than the one on GREC. The reason for that is related
to the pruning of the search tree of Muta which is not as easy as GREC. On the other hand, on
Fingerprint, a di�erent behavior is observed. In fact, as illustrated, the �rst comparison needed
less time compared to the other successive comparisons during the exploration of the search tree.
When digging into the details of the results, we noticed that on Fingerprint in general, the found
upper bounds are relatively small compared to other datasets in the paper. Thus for such a small
UB, sometimes it could prune the search tree from the beginning and sometimes not. Moreover,
the gap between successive upper bounds is not big on Fingerprint. For instance, in our chosen
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Figure 4: Fingerprint

Figure 5: One-Tree-kMGED(RO): The upper bound found at the end of each comparison
DF (Gi,Gj).
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Gi from Fingerprint and Muta, the gap between the �rst UB and the second one in Muta is 20.56
times more than the gap in Fingerprint.

5.5.2 The impact of reordering the train graphs

Regarding the RO, each train set, depicted in Section 5.1, was randomized 4 times. The results of
these orders were quite similar. Thus, the measured time, shown in Table 4, is the average classi�ca-
tion time of the 4 di�erent orders. Concerning the di�erent orders: MGPGO, SGPGO and RO, on
all the datasets, One-Tree-kMGED(SGPGO) was always faster than One-Tree-kMGED(MGPGO).
On the other hand, regarding One-Tree-kMGED(SGPGO) and One-Tree-kMGED(RO), no one
beats the other. Theoretically saying and as discussed in Section 4.3, One-Tree-kMGED(SGPGO)
should be faster than One-Tree-kMGED(RO) especially when the number of training graphs is
high. In practice, One-Tree-kMGED(SGPGO) was slightly faster than One-Tree-kMGED(RO) on
the biggest datasets (i.e., Muta and WebPage). This con�rms that the order of graphs is more
important when the training database is big. Another remarkable result regarding the reordering
techniques is the classi�cation rate on Muta. The classi�cation rate of One-Tree-kMGED(CAFO)
on Muta is sightly higher than both One-Tree-kMGED(SGPCO) and One-Tree-kMGED(RO). To
consolidate these results, the sum of the obtained distances of One-Tree-kMGED(CAFO) is 1.025
times more than the sum of distances of One-Tree-kMGED(SGPCO). This result proves that
One-Tree-kMGED(SGPCO) obtained lower distances than One-Tree-kMGED(CAFO).

It is worth mentioning that a better minimization of the GED or the kMGED problems does
not always lead to a higher classi�cation rate. The GED/MGED problem is the minimization
of the sum of the edit operations' costs which is di�erent than minimizing the number of wrong
classi�cations. However, One-Tree-kMGED(SGPCO) better minimized the MGED problem and
provided a higher classi�cation rate. Both criteria are not the same but are closely coupled.

Table 4: Classi�cation results on �ve datasets where t refers to the average time needed by each
dissimilarity computation whereas Acc refers to the classi�cation accuracy. The best results are
marked in bold style. Note that k was �xed to 1.

GREC Protein Muta Fingerprint WebPage House-Hotel
t Acc t Acc t Acc t Acc t Acc t Acc

one-Tree-k-DF (CAFO) 136.31 98.5 320.77 47 70.56 72.41 30.25 61.68 152.48 21 395.66 98,57
one-Tree-k-DF (SGPCO) 51.01 98.5 306.48 47 69.23 71.05 29.06 61.68 48.91 21 370.43 98,57
one-Tree-k-DF (RO) 54.13 98.5 291.60 47 69.45 71.28 28.76 61.68 51.61 21 363.37 98,57

DF 491.87 98.5 426.90 42 487.43 70 168.45 63.83 470.03 21 485.05 98,57
BS-1 242.08 98.5 127.35 42.5 434.61 55.5 74.35 62.46 426.22 12.4 108.18 98.57
BS-100 293.45 58.7 475.69 31.0 486.71 55.5 211.74 10.3 499.21 4.3 478.91 98,57
BP 217.81 98.5 295.20 52 352.36 70 42.60 60.40 466.81 21 308.71 98.57
FBP 97.63 98.5 197.12 38.5 250.57 70 36.53 61.35 449.06 15 189.07 98.57
H 222.25 96.21 359.95 43 350.40 58.96 51.19 54.76 495.45 18.88 288.68 98.57

5.5.3 The impact of the training set size

To study the in�uence of the number of graphs in the training set on the time needed by each
dissimilarity computation DF (Gi, Gj , UB), we chose Muta since it is the dataset that contains the
biggest number of training graphs. We tested One-Tree-kMGED(SGPCO) and varied the number
of train graphs in the dataset to see its impact on the average time needed per dissimilarity
computation as depicted in Figure 10. The results shows that increasing the number of graphs
decreases the average time needed for DF (Gi, Gj , UB). Such results con�rm that our proposed
approach is more e�cient when increasing the number of graphs in the training set since it helps
in decreasing the value of the global UB and thus rapidly pruning the search tree.

5.5.4 The impact of the parameter k

In all the previous experiments, the value of k was �xed to 1. In this part of the experiments, we
study the impact of the parameter k on the average time needed by each dissimilarity computation.
As discussed in Section 4.3.1, varying k has an impact on the classi�cation time since the obtained
distance of the kth nearest neighbor is used as an upper bound UB. As depicted in Figure 11, k = 1
represents the best case since it was the fastest in terms of the average time to classify each graph
Gi. This is because the used upper bound UB is the smallest distance. Increasing the value of k
increases the average time since the involved upper bound is the kth one.
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Figure 7: Muta
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Figure 8: Fingerprint

Figure 9: One-Tree-kMGED(RO): The evolution of the time needed by each dissimilarity compu-
tation while exploring the search tree of Gi.
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Figure 10: One-Tree-kMGED(SGPCO): The impact of varying the number of training graphs on
the average time needed per dissimilarity computation.
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Figure 11: One-Tree-kMGED(SGPCO) on Muta: The impact of the parameter k on the average
time needed by each dissimilarity computation.
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6 Conclusions and perspectives

In this paper, we focused on the classi�cation problem in graph space in order to keep the structural
information of the graphs. The well-known k-nearest neighbors (kNN) classi�er has many advan-
tages thanks to di�erent properties: it is non-parametric and only one parameter k is needed.
However, its time consumption cannot be ignored especially when the number of graphs in the
training set is big. A few research papers have proposed to shrink the number of comparisons
through either clustering the training graphs or generating class prototypes. One of the main
limitations of such methods is the loss of information as they imply a signi�cant reduction of the
training set (with the use of the representatives of clusters instead of all the labeled samples).
Boundaries between classes can then become less precise. On the contrary, our proposed method
tries to reduce time complexity by keeping all the available information. We considered the clas-
si�cation of a graph Gi as a single problem involving the entire training set. To do so, a new
problem referred to as k-multi graph edit distance (kMGED) was de�ned. The problem of �nding
kNN falls within the kMGED problem. To propose a �rst algorithm for solving the new problem,
a fast nearest neighbors Tree-search algorithm was put forward. This approach, referred to as one-
Tree-k-DF takes advantage of an existing branch-and-bound based algorithm dedicated to solving
the GED problem. Instead of comparing the query graph Gi with each Gj of the training set
independently, one-Tree-kMGED groups the search trees of these comparisons inside one unique
search tree dedicated to the query graph Gi. Such an approach aims at improving the upper bound
as fast as possible and thus pruning the misleading parts of the global search tree. The results
showed that one-Tree-k-DF drastically minimizes the total classi�cation time while achieving high
classi�cation rates when compared to fast GED algorithms. The improvement of classi�cation
time was remarkably seen on Muta and Webpage, since these datasets have the largest number of
training graphs. In the experiments, this fact was proved by varying the number of training graphs
of Muta. The experiments were also conducted on 3 di�erent reordering techniques of the training
graphs in order to demonstrate the strong impact of the ordering of the training set. As a future
work, the order of the training graphs could be learned in order to prune the search tree as fast as
possible. A hierarchical representation or clustering of training graphs before the kNN stage starts
could be of great interest especially when the number of training graphs is tremendous. Moreover,
transforming one-Tree-kMGED into a parallel algorithm could reduce its computation time.
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