Zeina Abu-Aisheh

Romain Raveaux

Jean-Yves Ramel

Ecient k-nearest neighbors search in graph space

The k-nearest neighbors classier has been widely used to classify graphs in pattern recognition. An unknown graph is classied by comparing it to all the graphs in the training set and then assigning it the class to which the majority of the nearest neighbors belong. When the size of the database is large, the search of k-nearest neighbors can be very time consuming. On this basis, researchers proposed optimization techniques to speed up the search for the nearest neighbors. However, to the best of our knowledge, all the existing works compared the unknown graph to each train graph separately and thus none of them considered nding the k nearest graphs from a query as a single problem. In this paper, we dene a new problem called multi graph edit distance to which k-nearest neighbor belongs. As a rst algorithm to solve this problem, we take advantage of a recent exact branch-and-bound graph edit distance approach in order to speed up the classication stage. We extend this algorithm by considering all the search spaces needed for the dissimilarity computation between the unknown and the training graphs as a single search space. Results showed that this approach drastically outperformed the original approach under limited time constraints. Moreover, the proposed approach outperformed fast graph edit distance algorithms in terms of average execution time especially when the number of graphs is tremendous. 1

Introduction

Graphs are frequently used in various elds of computer science, since they constitute a universal modeling tool for the description of structured data. The handled objects and their relations are described in a single and human-readable formalism. Hence, tools for supervised graphs classication and graph mining are required in many applications such as pattern recognition (Riesen, 2015a), chemical components analysis [START_REF] Gaüzère | Two new graphs kernels in chemoinformatics[END_REF] and structured data retrieval [START_REF] Kooli | Inexact graph matching for entity recognition in ocred documents[END_REF]).

Graph classication consists in assigning a class or a category to an unknown graph. To do so, the unknown graph is compared to the set of training graphs. The graph classication can be achieved directly in graph space (G) or indirectly in vector space (R n) by means of an embedding method. Methods operating in a vector space can also be split into two parts whether they rely on explicit (φ : G → R n) [START_REF] Gaüzère | Two new graphs kernels in chemoinformatics[END_REF] or implicit (k :< G, G >→ R) graph embedding [START_REF] Riesen | Graph Classication and Clustering Based on Vector Space Embedding[END_REF]. Concerning the explicit graph embedding methods, some features (vertex degree, labels occurrence histograms,etc.) are extracted from the graph. Hence, the graph is projected in a Euclidean space. The choice of sucient features is not trivial. Moreover, the number of such features has to be very large and thus the dimensionality issues occur. Regarding the implicit approaches, an explicit data representation is of secondary interest. That is, rather than dening individual representations for each graph, the graph at hand is represented by pairwise comparisons only. The graphs are implicitly projected in a Euclidean space without dening the function φ. However, such approaches suer from their computationally intensive cost when the dataset is large. This paper deals with paradigms that operate directly on the graph space and can thus capture more structural distortions.

One of the most well-known and used approaches to compute a distance (dissimilarity) between two graphs taking distortion into account is the graph edit distance (GED). The GED is achieved by nding a set of graph edit operations: insertions, deletions and substitutions of vertices as well as edges in order to transform a graph into another with the minimal cost. The traditional approach to graph edit distance-based pattern recognition system is given by the k-Nearest Neighbor classication (kNN) (Riesen (2015a)). This classier is simple in the sense that only a metric, or a distance function, that measures the dissimilarity between graphs has to be dened. Afterwards, the unknown graph is compared to all the graphs in the training set. Finally, the unknown graph is assigned to the most common class among its kNN measured by the distance function.

Finding the exact kNN can be done through the calculation of an exact GED (such as in [START_REF] Abu-Aisheh | An exact graph edit distance algorithm for solving pattern recognition problems[END_REF]; Neuhaus et al. (2006a)). This approach has an exponential complexity in function of the size of compared graphs and a linear complexity in function of the number of training graphs. Moreover, its complexity increases especially when the number of graphs in the learning set is tremendous. Two approaches could be conducted to accelerate the process of the kNN. One can cluster and structure the search space (e.g., Wang (2012)) or use graph prototypes so as to avoid comparing a test graph with all the graphs in the training set (e.g., [START_REF] Raveaux | Learning graph prototypes for shape recognition[END_REF]. Another approach could be to nd a fast GED algorithm. Recently, lots of approximate GED methods have been proposed in the literature (Riesen (2009); [START_REF] Fischer | Approximation of graph edit distance based on hausdor matching[END_REF]; [START_REF] Bougleux | Graph edit distance as a quadratic assignment problem[END_REF]) to cite a few of them. However, in these approaches all the comparisons are performed independently regardless to the nal kNN objective and the obtained solutions are not exact. In this paper, we propose to reformulate the kNN problem under the multi graph edit distance (MGED) paradigm. During the classication of a test graph, all the GED computations whose objective is to classify an unknown graph G i are merged to obtain a more global problem. As a rst algorithm to solve the MGED problem, we take advantage of a recent exact branch-and-bound (BnB) GED approach, called DF in [START_REF] Abu-Aisheh | An exact graph edit distance algorithm for solving pattern recognition problems[END_REF]. The knowledge about the global MGED problem can be considered as the merging of the search spaces to prune the global search space associated to all sub-GED problems.

This paper is organized as follows: In Section 2, the kNN classier and the GED problem are presented. In Section 3, we spot light on the fast GED metrics approaches in the literature that are currently used in a classication context. In Section 4, our proposal is detailed. First, a formal denition of the MGED problem is given. Second, a rst algorithm to solve the MGED problem is put forward. This method is an extension of an existing BnB GED strategy. The purpose of the new algorithm is to speed up the kNN search in graph space. The parameters' impact of the algorithm is then discussed. Section 5 is dedicated to the experiments, protocol and results that show the eciency of the approach in terms of accuracy and computation time. Section 6 is devoted to conclusions and perspectives.

Problem statement

Our proposal lies in accelerating the classication process of the kNN classier in graph space. Thus, in this section, we formally dene each of the kNN classier [START_REF] Bhatia | Survey of nearest neighbor techniques[END_REF]) and the GED problem (Riesen (2015a)).

The k-nearest neighbors problem

The objective of the kNN classier is to classify an unknown object by assigning it a class which represents the majority of its nearest neighbors. Let the objects be graphs and let D be the set of graphs and let C be the set of classes. Given a graph training set

T rS = {(G j , c j)} M j=1
, where G j ∈ D is a graph and c j ∈ C is the class of the graph. The kNN classier induces from T rS a mapping function f : G → C which assigns a class to an unknown graph from the test set T eS. The 1-nearest neighbor problem can be dened as follows:

Denition 1 1-Nearest Neighbors Problem (G * , c *) = arg min (Gj ,cj)∈T rS d(G i , G j) ∀G i ∈ T eS (1)
Where d(G i , G j) is the metric used to calculate a dissimilarity between G i and G j . In Denition 1, the number of calls to the dissimilarity function is equal to M , where M is the size of the training set. To extend Denition 1 to k-nearest neighbors, we introduce K, the set of the kNN from a query graph

G i ∈ T eS. Let K = {(G 1 , c 1), • • • , (G j , c j), • • • , (G k , c k)}
be a set of graphs along with their class labels with (G j , c j) ∈ T rS. The k-Nearest Neighbors problem can be dened by:

Denition 2 k-Nearest Neighbors Problem K = arg sort (Gj ,cj)∈T rS (d(G i , G j), k) ∀G i ∈ T eS (2)
Where sort is a function that performs an ascending sort of d(G i , G j) values. k is the number of retained values to choose the number of nearest neighbors of G i . To exploit the Denition 2 in a classication context, a voting operator has to be dened. The max voting operator is a function τ : K → C dened by: Denition 3 Max Voting Operator :τ

c * j = arg max cj ∈C m cj (K) (3)
Where m cj is a function that counts the number of observations that fall into each class c j .

The kNN classier has been widely used in the literature. The use of this classier is very simple since it is a non-parametric technique and thus it does not need knowledge about the distribution of classes. Moreover, when the metric is dened, the kNN classier can provide an explanation of the classication results and thus the kNN classier has an advantage over the other classiers which are considered as black-box models [START_REF] Dreiseitl | Logistic regression and articial neural network classication models: a methodology review[END_REF]). In [START_REF] Cover | Nearest neighbor pattern classication[END_REF], it has been shown that when there are enough training patterns, the classication error of the kNN classier is smaller than twice the Bayes error.

The graph edit distance problem

In graph space, the similarity or dissimilarity between two graphs requires the computation and the evaluation of the best matching between them. Since exact isomorphism rarely occurs in pattern analysis applications, the matching process must be error-tolerant, i.e., it must tolerate dierences on the topology and/or its labeling. In this context, the most well-known paradigm in the literature is the graph edit distance (GED) (Riesen, 2015a). In the GED, the graph matching process and the dissimilarity computation are linked through the introduction of a set of graph edit operations. Each edit operation (i.e., substitution, deletion and insertion of vertices and edges) is characterized by a cost, and the dissimilarity measure is the total cost of the least expensive set of operations that transform one graph into another one.

Formally saying, the GED between two attributed graphs G i and G j is dened as follows:

Denition 4 Graph Edit Distance

d λmin (G i , G j) = min λ∈Γ(Gi,Gj) o∈λ c(o) (4)
where c(o) denotes the cost function measuring the strength of an edit operation o and Γ(G i , G j) denotes the set of all the edit paths transforming G i into G j . The exact correspondence is one of the correspondences that obtains the minimum cost (i.e., d λmin (G i , G j)). The GED problem formulated in Denition 4 has been proven to be NP-Hard in [START_REF] Zeng | Comparing stars: On approximating graph edit distance[END_REF]. As mentioned in Section 2.1, when the number of graphs in the training set is large, the kNN classier becomes a time-consuming process. In fact, the number of calls to the GED solver grows linearly in function of the training set size. Moreover, the GED problem cannot be solved optimally in polynomial time. Consequently, many researchers have focused their research on designing fast KNN classiers on top of fast GED solvers. Thus, in the next section, we explore the relatively fast GED methods proposed as a dissimilarity measure that are usually used when classifying graphs using the kNN classier.

3

State of the art: GED approaches as a dissimilarity measure to classify graphs using kNN neighbors

To propose fast GED algorithms that help in speeding up the classication process, researchers switched from exact to approximate GED methods.

To overcome the bottleneck of the best rst BnB algorithm referred to as A * in (Neuhaus et al., 2006a), a recent GED algorithm, referred to as DF, was put forward in [START_REF] Abu-Aisheh | An exact graph edit distance algorithm for solving pattern recognition problems[END_REF] to reduce the memory consumption and also the computation time. This was done using a dierent exploration strategy (i.e., depth-rst instead of best-rst). Furthermore, the unfruitful nodes in the search tree are pruned by a lower and upper bounds strategy. This algorithm was transformed to anytime DF in [START_REF] Abu-Aisheh | Anytime graph matching[END_REF] thanks to the time constraints where the user can stop the algorithm at a specic t and output the encountered solutions.

Beam-Search (BS) in (Riesen (2009)) has been put forward to reduce the complexity of A * . The purpose of BS is to prune the search tree via a parameter that keeps the x most promising partial edit paths. The assignment problem in (Riesen, 2009) was reformulated as nding an exact matching in a complete bipartite graph in order to reduce the quadratic assignment problem (of GED computation) to an instance of a linear sum assignment problem. This method was then sped up in [START_REF] Serratosa | Fast computation of bipartite graph matching[END_REF][START_REF] Serratosa | A fast exact k-nearest neighbors algorithm for high dimensional search using k-means clustering and triangle inequality[END_REF]). In the fast BP in [START_REF] Serratosa | Fast computation of bipartite graph matching[END_REF]), referred to as FBP, the cost matrix is composed of only one quadrant whereas in [START_REF] Serratosa | A fast exact k-nearest neighbors algorithm for high dimensional search using k-means clustering and triangle inequality[END_REF]) two square matrices are dened depending on the order of the involved graphs. These approaches take local rather than global relationships into consideration. To go beyond the local structure problem, few works have been proposed [START_REF] Riesen | Combining Bipartite Graph Matching and Beam Search for Graph Edit Distance Approximation[END_REF]; [START_REF] Ferrer | A First Step Towards Exact Graph Edit Distance Using Bipartite Graph Matching[END_REF]; [START_REF] Carletti | Approximate graph edit distance computation combining bipartite matching and exact neighborhood substructure distance[END_REF]), to name a few of them. However, the computation time of these approaches is higher than BP and FBP. Recently, two approaches based on Integer Projected Fixed Point and Graduated Non-Convexity and Concavity methods have been proposed in [START_REF] Bougleux | Graph edit distance as a quadratic assignment problem[END_REF].

All these approaches are relatively fast when we intend to compare a single graph pair. However, in a classication context, especially when the number of graphs is large, the sum of the number of calls to the GED solvers leads to an expensive computational cost. To the best of our knowledge, none of the previous works dealt with the problem of classifying a test graph as a single and global graph comparison problem. In a preliminary work in [START_REF] Abu-Aisheh | Fast nearest neighbor search in graph space via a branch-and-bound strategy[END_REF], a new problem referred to as multiple GED (MGED) was dened. This approach was limited to k = 1. In this paper, we extend this problem to kMGED by generalizing the problem to k ≥ 1. We then propose a rst algorithm to solve the kMGED problem. Finally, in this paper a stronger experimental study is provided.

4

Our proposal: Solving the kMGED problem

When using the kNN classier to classify graphs, the comparison of G i and each G j is achieved independently. That is, the result of a prior comparison cannot help in solving the next comparison.

To tackle this problem, we propose to dene the MGED problem along with a dedicated algorithm.

A new problem: Reformulating the kNN search as the kMGED problem

The MGED can be seen as merging of the two problems formulated in Denitions 2 and 4. First, let us recall that

Γ(G i , G) = {λ 1 Gi,G , λ 2 Gi,G , • • • , λ p Gi,G
} is the set of all possible matchings between G i and G. The number of possible matchings p is exponential with respect to the number of vertices in G i and G. Now, let

L i = {(c 1 , Γ(G i , G 1)), • • • , (c j , Γ(G i , G j)), • • • , (c M , Γ(G i , G M))
} be the set of all possible matchings between G i and each graph G j ∈ T rS where c * is the class of the graph G * . The set L i can be expanded by developing the Γ sets.

L i = {(c 1 , λ 1 Gi,G1), (c 1 , λ 2 Gi,G1), • • • , (c 1 , λ p Gi,G1), • • • , c j , λ 1 Gi,Gj), (c j , λ 2 Gi,Gj), • • • , (c j , λ q Gi,Gj), • • • , (c M , λ 1 Gi,G M), (c M , λ 2 Gi,G M), • • • , (c M , λ r Gi,G M)}.
The MGED problem can be dened as follows:

Denition 5 Multi Graph Edit Distance Problem (G * , c *) = arg min (c,λ G i ,G)∈L o∈λ G i ,G c(o) ∀G i ∈ T eS (5)
The former Denition 5 can be seen as searching the minimum matching among all the matchings between one query graph G i and a graph collection. In Denition 2, the MGED problem can be extended to kNN by using the sort function. The kMGED problem can be dened as follows:

Denition 6 k-Multi Graph Edit Distance Problem K = arg sort λ G i ,G ∈L (o∈λ G i ,G c(o), k) ∀G i ∈ T eS (6)
where sort is a function that performs an ascending sort. From the list of elements outputted by the arg sort function, only the k best elements are conserved with respect to the following uniqueness quantication constraint:

∃!(G j , c j) ∈ K (7)
where K is the set of graphs along with their class labels with (G j , c j) ∈ T rS. Constraint 7 ensures that the pair (G j , c j) cannot appear twice. That is, only the best feasible solutions of each GED computation (G i and G j) is selected and thus (G j , c j) appears only once. In the worst case, the time complexity of solving the problem of kMGED is exponential in the number of vertices of the graphs G i and G j multiplied by the number of graphs in T rS. In other words, the complexity in the worst case equals to the complexity of the kNN classier (see Denition 2) multiplied by the complexity of the GED problem (see Denition 4).

4.2 Our proposal: One-tree depth rst algorithm to solve the kMGED problem

In this section, we put forward a rst algorithm to solve the kMGED problem dened in Denition 6. As a nal application, the algorithm uses the kNN to classify a query graph G i with a single search space.

Algorithm description

Algorithm 1 depicts the main steps of the proposed algorithm, called One-Tree-kMGED. Lines 1 to 3 correspond to the initialization step. The GED solver is called for the G i and G j (Line 5).

The obtained distance d is then added to the list Dmin at the location k + 1 (line 7). The list of distances is sorted in ascending order while keeping track of IDs (Line8). In Line 9, the upper bound UB is updated and is given the value of the k th element saved in the distance list Dmin (i.e., Dmin[k]). After all the aforementioned steps, the algorithm One-Tree-kMGED returns the graphs along with their associated class label

(G IDmin[k] , c IDmin[k]).
Algorithm 1 One-Tree-kMGED Algorithm Input: The set T rS:

{(G 1 , c 1), • • • , (G M , c M)
}, the unknown graph G i and the parameter k Output: the k nearest graphs to G i from the set T rS with their associated class

1: Dmin = [+∞, • • • , +∞] A distance of k + 1 elements 2: IDmin = [+∞, • • • , +∞] A graph ID list 3: U B = +∞
The initial upper bound 4: for j = 1 to M do 5:

d = GED (G i ,G j ,U B) 6: Dmin[k + 1] = d 7: IDmin[k + 1] = j 8:
(IDmin, Dmin) = sort Dmin (IDmin, Dmin) sort in an ascending order 9:

U B = Dmin[k] 10: end for 11: Return (G IDmin[1] , c IDmin[1]), • • • , (G IDmin[k] , c IDmin[k])

Used GED solver

In line 5 of Algorithm 1, any GED solver that takes an upper bound as an input is suitable. We propose to use the depth rst algorithm DF in [START_REF] Abu-Aisheh | An exact graph edit distance algorithm for solving pattern recognition problems[END_REF] since this algorithm outperformed A * in terms of time and memory consumption in addition to its ability to prune the search space thanks to its upper and lower bounds. DF consists of two main steps: Preprocessing and branch-and-bound. The preprocessing step consists in speeding up the calculations through the construction of the vertex-to-vertex assignment cost matrix (the same applies on edges). Once the preprocessing stage is nished. The solution space is organized as a search tree. The exploration of the search tree is performed in a depth-rst way. Bounding is performed when nding a leaf node with a cost smaller than U B. Pruning is performed by cutting nodes with a larger cost than U B. A node p has a cost computed as follows: lb(p) = g(p) + h(p) where g(p) is the cost of the partial edit path and h(p) is an estimation of the future cost to obtain a complete edit path. If lb(p) is not a lower bound, DF can miss optimal solutions. lb(p) is a lower bound if it does not overestimate the optimal cost of a complete edit path. Consequently, lb(p) is a lower bound if h(p) does not overestimate the remaining cost of unmatched elements. h(p) is computed as follows: Let us assume that a partial edit path at a position in the search tree is given, and let the number of unprocessed (unmatched) vertices of the rst graph G i and second graph G j be n i and n j , respectively. To estimate the costs of the remaining optimal edit operations, we accumulate the costs of the min(n i , n j) least expensive node substitutions. The linear assignment problem should be solved to achieve this goal. However, to be fast, the minimization problem is not solved. Instead, we consider that each substitution is cost-free. Consequently, the least expensive node substitutions are always equal to zero. Any of the selected substitutions is always cheaper than a deletion or an insertion operation. Next, we accumulate the costs of max(0, n i -n j) node deletions and max(0, n j -n i) node insertions. The unprocessed edges of both graphs are handled analogously and independently of the vertices. Obviously, this procedure allows multiple substitutions involving the same vertex or edge and, therefore, it possibly represents an invalid way to edit the remaining part of G i into the remaining part of G j . But, the estimated cost certainly constitutes a lower bound of the exact cost. This fast lower bound is used to make the algorithm as fast as possible and to spend the available time exploring and pruning the global search tree rather than computing the lower bound.

In order to simply illustrate One-Tree-kMGED, Figure 1 highlights its idea for k = 1. Given a query graph G i and a learning database T rS, the idea is to consider each search tree S ij of the d(G i ,G j) as a sub-tree of the global tree dedicated to G i and referred to as T ij . For instance, in Figure 1, one can see that the rst UB found while exploring the sub-tree S i1 of GED(G i ,G 1) is 2. UB is then used as an initial UB of the sub-tree S i2 of GED(G i ,G 2) and so on. Such an operation helps in pruning the sub-trees as fast as possible while searching for the nearest neighbor of G i .

Figure 1: one-Tree-kMGED when k = 1. Given a query graph G i and graphs in the training set, the problems GED(G i ,G 1), GED(G i ,G 2) and GED(G i ,G 3) are considered as sub-trees of the global tree (T Gi). The sub-tree of GED(G i ,G j) is pruned thanks to UB that is found via GED(G i ,G 1).

Complexity and time constraint

In the worst case, the time complexity of one-Tree-kMGED is exponential in the number of vertices of the involved graphs. This case occurs when the rst UB does not help in pruning the rest of the search tree and thus all the T rS subtrees need to be explored. One should notice that the complexity in the worst case equals to the complexity of the naive way illustrated in Denition 2.

Conceptually speaking, DF and One-Tree-kMGED provide the same neighbors. This statement is true under one assumption that is the time limited to solve each graph comparison is innite. Another way to view this assumption is to say that the time limit is never reached by the solvers. On the other hand, One-Tree-kMGED does not output the distance of each graph pair (G q ,G i). The GED computation of each (G q ,G i) is stopped as soon as the solver proved that no better solutions than the global upper bound UB could be found. In such a case, the UB value is returned as an output of the given graph comparison. The only distances that are guaranteed to be outputted are the GED values of the kNN. The global UB could accelerate the classication time and improve the classication rate.

Theoretical discussion around the parameters impacts

As depicted in Algorithm 1, one-Tree-kMGED has 3 parameters: the unknown graph G i , the training set TrS and the parameter k for the selection of the nearest neighbors. In this section, a discussion about the impact of Trs and k is provided

Parameter k

The parameter k has an important impact on the classication rate of kNN. This impact was deeply studied in [START_REF] Batista | How k-nearest neighbor parameters aect its performance[END_REF]). The authors showed that on 4 dierent types of datasets the classication rate increases as k increases up to a maximum between k=5 and k=11. Suppose we have a classier with only 2 classes, using less neighbors (e.g., k=1) could lead to overtting. This phenomena will be also demonstrated in the experiments.

Regarding One-Tree-kMGED, having a big value of k, could have a big impact not only on the classication rate but also on the execution time. The reason is that, the upper bound will be the k th one in the {d min } list and not the best upper bound found so far. The k th upper bound is higher than the rst upper bound. Consequently, the k th upper bound is likely less capable of cutting the search tree. Such a fact could slow down the algorithm depending on the diculty of the classication problems.

Ordering the graphs in the training set

In Algorithm 1, the graphs in TrS were supposed to be already ordered. However, the question arises: Which order of training graphs should be taken into account in order to prune the search tree as soon as possible?

In this article, we propose 3 dierent orderings. Two of them depend on the class c j of each graph G j in TrS. Formally saying:

T rS CACO = {(G n , c n)} M n=1 = sort cj (T rS = {(G j , c j)} M j=1) s.t. c n < c n+1 ∀n ∈ [1, • • • , M -1] (8)
T rS SGP CO = {(G n , c n)} M n=1 = mod cj (T rS = {(G j , c j)} M j=1) s.t.c n = c j mod(card(C)) ∀j ∈ [1, • • • , M] (9)
T rS RO = {(G n , c n)} M n=1 = random(T rS = {(G j , c j)} M j=1) (10)
where T rS * * * * is T rS with a dierent order. Let us suppose that we have 3 classes, C = {1, 2, 3}. The rst ordering technique we propose is called Class-After-Class-Order (CACO) reordering (see Eq.8). In this ordering technique, all the graphs whose class is 1 are put rst in T rS CACO , then the graphs whose class is 2 and so on. This approach might not lead to a fruitful pruning because if an unknown graph belongs to Class N which is put at the end of T rS CACO , then its search tree would have so many nodes, the upper bound would be relatively big and the execution time would be long.

The second technique based on classes is called Single-Graph-Per-Class-Order (SGPCO) (see Eq.9). The Single-Graph-Per-Class assures to insert a graph whose class is 1 in T rS SGP CO rst (c 1 = 1), then a graph whose class is 2 (c 2 = 2), then a graph from 3 (c 3 = 3), then a graph from class 1 (c 4 = 1) and so on. Compared to the rst reordering approach, this one is ideal in the sense that the distribution of graphs is homogeneous.

Another technique that is not based on classes is called Random-Order (RO) (see Eq.10). The idea is to randomly reorder the graphs in TrS, this approach is better than Class-After-Class-Order, however, it may not eciently prune the search tree as Single-Graph-Per-Class because for instance a random reordering could put 3 graphs successively whose class is the same.

In the experiments section, a study around the reordering of graphs in TrS is conducted.

Protocol and experiments

This section is dedicated to the protocol and experiments that show the interest of One-Tree-kMGED in a graph classication context.

Selected datasets

In the experiments, 6 datasets (GREC, Protein, Mutagenicity, Fingerprint and Webpage) from the IAM repository [START_REF] Riesen | Iam graph database repository for graph based pattern recognition and machine learning[END_REF] and House-Hotel from the Tarragona repository (Moreno-García et al., 2016) are selected. GREC contains graphs of rather small size with continuous attributes on vertices and edges which play an important role in the matching process. MUTA is representative of graph matching problems where graphs have only symbolic attributed and the number of the train graphs is 1500 which is the largest in IAM. Protein contains numeric attributes on each vertex as well as a string sequence that is used to represent the amino acid sequence. Webpage has the biggest graphs in IAM where the maximum number of vertices is 785. Webpage has numeric values on both vertices and edges. Fingerprint has only attributes on edges. Finally, House-Hotel has 60-size feature vector using Context Shape on vertices and the distance between two points on edges.

Table 1 synthesizes the characteristics of each of the selected datasets in terms of the number of graphs in both train and test sets, the average and maximum number of vertices and edges and the attributes on both of them. Each dataset has specic edit cost functions that dene how the insertion, deletion and substitution are achieved (Riesen, 2015b). In most of the datasets, two non-negative meta parameters are associated: (τ vertex and τ edge) where τ vertex denotes a vertex deletion or insertion costs whereas τ edge denotes an edge deletion or insertion costs. A third meta parameter α is integrated to control whether the edit operation cost on the vertices or on the edges is more important. Table 2 demonstrates the cost functions of each of the included datasets as well as their meta parameters.

Chosen graph matching methods (coupled with classical KNN)

To compare our global approach with the classical way to use kNN with graphs, we select dierent exact and approximate GED algorithms.

On the exact method side, we chose the depth-rst GED algorithm from (Abu-Aisheh et al., 2015) since it outperforms the A * algorithm [START_REF] Riesen | Speeding up graph edit distance computation with a bipartite heuristic[END_REF] in terms of the running time and memory consumption.

On the approximate side, we included the beam-search (BS) algorithm with two dierent values BS-1 (i.e., the greedy algorithm) and BS-100. We also chose the bipartite matching algorithm (BP) (Riesen, 2009) as it has been shown to be one of the most ecient approximate algorithms so far. In addition, we selected a fast version of BP [START_REF] Serratosa | Fast computation of bipartite graph matching[END_REF], referred to as FBP in the literature. In our implemented version of FBP, the three restrictions on the edit costs were not included [START_REF] Serratosa | A fast exact k-nearest neighbors algorithm for high dimensional search using k-means clustering and triangle inequality[END_REF]. Finally, we picked a set-based approach based on the Hausdor matching [START_REF] Fischer | Approximation of graph edit distance based on hausdor matching[END_REF]. Unlike other methods, this algorithm is unable to output a matching. Table 3 summarizes the chosen methods.

The lower bound of each of the branch-and-bound methods included in the experiments (i.e., DF, BS-1 and BS-100) is the same one used in one-Tree-kMGED, see Section 4.2.2.

A lower bound algorithm based on the Hausdor distance

Environment and Constraints

The experiments were conducted on a computer with a 24-core Intel i5 processor at 2.10GHz and 16 GB of memory. The time constraint used for all the datasets is xed to 500 milliseconds (ms) by dissimilarity computation that is the maximum time needed by BP and FBP to output a solution. This way ensures that BP and FBP could solve any instance. On this basis, any GED algorithm that needs more than 500 ms is stopped and the best answer found so far is outputted. Note that One-Tree-kMGED and DF are exact algorithms without time constraints.

In order to study the inuence of the training graphs order on One-Tree-kMGED, the 3 dierent reordering ways discussed in Section 4.3.2 are integrated. Note that for the Class-After-Class-Order (CACO), only one reordering way is integrated. This reordering is the same as the one in the initial les of the IAM repository [START_REF] Riesen | Graph classication based on vector space embedding[END_REF].

As for the single-graph-per-class ordering (SGPCO) where the order of graphs is homogeneous, the order of classes is selected according to the order of the classes given in the initial les of the IAM repository. Thus, the rst graph given in the initial le is chosen rst, then the rst graph of the second class and so on.

Concerning the random ordering (RO), 4 dierent random orders are generated because we are interested in testing the impact of dierent random orders on One-Tree-kMGED.

Results

This section is 4-fold. First One-Tree-kMGED is compared to the classical approaches cited in Table 3. Second, the evolution of the upper bound and the average time per interval is tracked. Third, the study of the reordering techniques mentioned in Section 4.3.2 is conducted. Last but not least, the impact of varying the number of graphs in the training set and the parameter k is depicted.

Comparison with the classical approaches

In Table 4, the results achieved on all the datasets are presented. Note that the computation time corresponds to the average time needed per dissimilarity computation in milliseconds (ms). Moreover, in this experiment, k was xed to 1.

The results show that on all the datasets, one-Tree-kMGED was always faster than the classical DF approach. It also improved the classication rate of DF on both Protein and Muta. one-Tree-kMGED could improve UB while moving from one comparison to another. As a consequence, it pruned unfruitful parts of the global search tree and found smaller distances. A better minimization of the GED or the MGED problems does not always lead to a higher classication rate but it is more probable to nd signicant neighbors. When comparing one-Tree-kMGED to BP, one can see that one-Tree-kMGED was 4.2 times faster (on GREC), 3.6 times faster (on Muta) and 9.5 times faster (on WebPage). On the other hand, on Fingerprint and House-Hotel, the speed results of the two methods were quite similar. This is due to the small number of graphs in these datasets and thus the advantage of using prior UB in one-Tree-kMGED cannot be fully revealed. Moreover, on House-Hotel, BS-1 was the fastest. House-Hotel has easy graphs to classify (with only 2 classes) and that is why all the methods obtained 98.5% as a classication rate. Another interesting remark is that one-Tree-kMGED succeeded in improving the classication rate on Muta. However, on Protein, it was less accurate than BP. This is due to the number of train graphs which is 1500 on Muta and 200 on Protein as depicted in Table 1. On MUTA, one-Tree-kMGED was able to better minimize the sum of the costs of edit operations than BP. Despite the fact that BS-1 was faster than one-Tree-kMGED on Protein, the accuracy of BS-1 was lower. As a general conclusion, one-Tree-kMGED was the fastest algorithm, except on Protein and CMU where FBP won. This point is explained by the fact that the number of train graphs in both of them was quite small so that the interest of merging all sub-problems into a unique one is not useful, see Table 1. Thus, the search tree of one-Tree-kMGED corresponding to each G i is relatively small when compared to the trees of the other datasets. one-Tree-kMGED has less chance/time to prune o the search tree and thus fast approximate methods like FBP could be faster. One could also see that the speed gap between one-Tree-kMGED and approximate methods such as BP and FBP increases when the size of graphs and the number of train graphs increases, as it is demonstrated on Muta and WebPage.

The evolution of the upper bound

We deeply studied what happens during the classication of test graphs using one-Tree-kMGED. Thus, rst, we took three dierent graph queries (that were part of Table 1) from GREC, Muta and Fingerrint, respectively. Figure 5 depicts the upper bound improvement at the end of each comparison DF (G i , G j) where G j ∈ T rS on the 3 datasets (see line 5 in Algorithm 1). The settings are as follows: the order is RO and k = 1. One can see that improving UB happens frequently in the rst few milliseconds, however, after a certain time, UB stays longer time without being changed or with a small gap between the current UB and the new one.

The evolution of the average execution time

For the same classication problems illustrated in Figure 5 and under the same settings, we analyze the evolution (during dierent intervals) of the time needed to compare each pair of graphs while exploring the search tree. Figure 9 illustrates the results on GREC, Muta and Fingerprint, respectively. We can see that the rst distance computation on GREC and Muta needed approximately 400 ms while the other comparisons needed less time. This shows that the UB s were fruitful in pruning the search tree. We could also notice that the average execution time of the intermediate comparisons on Muta is higher than the one on GREC. The reason for that is related to the pruning of the search tree of Muta which is not as easy as GREC. On the other hand, on Fingerprint, a dierent behavior is observed. In fact, as illustrated, the rst comparison needed less time compared to the other successive comparisons during the exploration of the search tree. When digging into the details of the results, we noticed that on Fingerprint in general, the found upper bounds are relatively small compared to other datasets in the paper. Thus for such a small UB, sometimes it could prune the search tree from the beginning and sometimes not. Moreover, the gap between successive upper bounds is not big on Fingerprint. For instance, in our chosen q 0 50 100 Figure 2: GREC q 0 500 1000 1500 0 50 100 150

Comparisons

Upper Bound

Figure 3: Muta q 0 50 100 G i from Fingerprint and Muta, the gap between the rst UB and the second one in Muta is 20.56 times more than the gap in Fingerprint.

The impact of reordering the train graphs

Regarding the RO, each train set, depicted in Section 5.1, was randomized 4 times. The results of these orders were quite similar. Thus, the measured time, shown in Table 4, is the average classication time of the 4 dierent orders. Concerning the dierent orders: MGPGO, SGPGO and RO, on all the datasets, One-Tree-kMGED(SGPGO) was always faster than One-Tree-kMGED(MGPGO).

On the other hand, regarding One-Tree-kMGED(SGPGO) and One-Tree-kMGED(RO), no one beats the other. Theoretically saying and as discussed in Section 4.3, One-Tree-kMGED(SGPGO) should be faster than One-Tree-kMGED(RO) especially when the number of training graphs is high. In practice, One-Tree-kMGED(SGPGO) was slightly faster than One-Tree-kMGED(RO) on the biggest datasets (i.e., Muta and WebPage). This conrms that the order of graphs is more important when the training database is big. Another remarkable result regarding the reordering techniques is the classication rate on Muta. The classication rate of One-Tree-kMGED (CAFO) on Muta is sightly higher than both One-Tree-kMGED (SGPCO) and One-Tree-kMGED (RO). To consolidate these results, the sum of the obtained distances of One-Tree-kMGED (CAFO) is 1.025 times more than the sum of distances of One-Tree-kMGED (SGPCO). This result proves that One-Tree-kMGED (SGPCO) obtained lower distances than One-Tree-kMGED (CAFO).

It is worth mentioning that a better minimization of the GED or the kMGED problems does not always lead to a higher classication rate. The GED/MGED problem is the minimization of the sum of the edit operations' costs which is dierent than minimizing the number of wrong classications. However, One-Tree-kMGED (SGPCO) better minimized the MGED problem and provided a higher classication rate. Both criteria are not the same but are closely coupled.

The impact of the training set size

To study the inuence of the number of graphs in the training set on the time needed by each dissimilarity computation DF (G i , G j , U B), we chose Muta since it is the dataset that contains the biggest number of training graphs. We tested One-Tree-kMGED (SGPCO) and varied the number of train graphs in the dataset to see its impact on the average time needed per dissimilarity computation as depicted in Figure 10. The results shows that increasing the number of graphs decreases the average time needed for DF (G i , G j , U B). Such results conrm that our proposed approach is more ecient when increasing the number of graphs in the training set since it helps in decreasing the value of the global UB and thus rapidly pruning the search tree.

The impact of the parameter k

In all the previous experiments, the value of k was xed to 1. In this part of the experiments, we study the impact of the parameter k on the average time needed by each dissimilarity computation. As discussed in Section 4.3.1, varying k has an impact on the classication time since the obtained distance of the k th nearest neighbor is used as an upper bound UB. As depicted in Figure 11, k = 1 represents the best case since it was the fastest in terms of the average time to classify each graph G i . This is because the used upper bound UB is the smallest distance. Increasing the value of k increases the average time since the involved upper bound is the k th one. q 0 10 20 Figure 6: GREC q q q q q q q q qq q qq q q q q q q q q q q qq qq q qqq qq q q q q q q q q q q q q q qq q qq q q q q qq 0 20

Conclusions and perspectives

In this paper, we focused on the classication problem in graph space in order to keep the structural information of the graphs. The well-known k-nearest neighbors (kNN) classier has many advantages thanks to dierent properties: it is non-parametric and only one parameter k is needed. However, its time consumption cannot be ignored especially when the number of graphs in the training set is big. A few research papers have proposed to shrink the number of comparisons through either clustering the training graphs or generating class prototypes. One of the main limitations of such methods is the loss of information as they imply a signicant reduction of the training set (with the use of the representatives of clusters instead of all the labeled samples). Boundaries between classes can then become less precise. On the contrary, our proposed method tries to reduce time complexity by keeping all the available information. We considered the classication of a graph G i as a single problem involving the entire training set. To do so, a new problem referred to as k-multi graph edit distance (kMGED) was dened. The problem of nding kNN falls within the kMGED problem. To propose a rst algorithm for solving the new problem, a fast nearest neighbors Tree-search algorithm was put forward. This approach, referred to as one-Tree-k-DF takes advantage of an existing branch-and-bound based algorithm dedicated to solving the GED problem. Instead of comparing the query graph G i with each G j of the training set independently, one-Tree-kMGED groups the search trees of these comparisons inside one unique search tree dedicated to the query graph G i . Such an approach aims at improving the upper bound as fast as possible and thus pruning the misleading parts of the global search tree. The results showed that one-Tree-k-DF drastically minimizes the total classication time while achieving high classication rates when compared to fast GED algorithms. The improvement of classication time was remarkably seen on Muta and Webpage, since these datasets have the largest number of training graphs. In the experiments, this fact was proved by varying the number of training graphs of Muta. The experiments were also conducted on 3 dierent reordering techniques of the training graphs in order to demonstrate the strong impact of the ordering of the training set. As a future work, the order of the training graphs could be learned in order to prune the search tree as fast as possible. A hierarchical representation or clustering of training graphs before the kNN stage starts could be of great interest especially when the number of training graphs is tremendous. Moreover, transforming one-Tree-kMGED into a parallel algorithm could reduce its computation time.

Figure 5 :

 5 Figure 4: Fingerprint Figure 5: One-Tree-kMGED(RO): The upper bound found at the end of each comparison DF (G i ,G j).

 Figure 7: Muta

Figure 9 :Figure 10 :

 910 Figure 9: One-Tree-kMGED(RO): The evolution of the time needed by each dissimilarity computation while exploring the search tree of G i .

 Figure 11: One-Tree-kMGED(SGPCO) on Muta: The impact of the parameter k on the average time needed by each dissimilarity computation.

 6

Table 1 :

 1 The characteristics of the datasets included in the experiments.

	Dataset	GREC Protein Muta	Fingerprint Webpage House-Hotel
	#train		286	200	1500	378	780	71
	graphs							
	#test		528	200	2337	1532	780	70
	graphs							
	vertices	11.5	32.6	30.3	5.38	186.04	30
	edges		12.2	30.8	79	8.8	104.03	62.1
	Max	ver-	25	40	71	26	785	30
	tices							
	Max edges	30	149	112	48	524	79
	Vertex		x,y coor-	Type	Chemical	None	Word's fre-	60 size fea-
	labels		dinates	and	symbol		quency	ture
				amino				
				acid se-				
				quences				
	Edge labels Line	Type	Valence	Orientation	Section la-	Distance
			type	and			bel	
				length				

Table 2 :

 2 The cost functions and meta parameters of the datasets.

	Dataset	GREC Muta	Protein FingerprintWebpage House-Hotel
	τvertex		90	11	11	0.7	2	3
	τedge		15	1.1	1	0.5	2	3
	α		0.5	0.25	0.75	0.75	0.5	0.5
	Vertex sub-	Extended	Dirac	Extended	Absolute	Dirac	Dirac
	stitution	eu-	function	string	value	function	function
	function	clidean		edit			
			distance		distance			
	Edge sub-	Dirac	Dirac	Dirac	Absolute	Absolute	Dirac
	stitution	function	function	function	value	Value	function
	function						
	Reference	Riesen	Riesen	Riesen	Riesen	Riesen	Moreno-
	of	cost	(2009)	(2009)	(2009)	(2009)	(2009)	García
	functions						et	al.
								(2016)

Table 3 :

 3 Methods included in the experiments.

Table 4 :

 4 Classication results on ve datasets where t refers to the average time needed by each dissimilarity computation whereas Acc refers to the classication accuracy. The best results are marked in bold style. Note that k was xed to 1.

	GREC t Acc one-Tree-k-DF (CAFO) 136.31 98.5 320.77 47 70.56 72.41 30.25 61.68 152.48 21 Protein Muta Fingerprint WebPage t Acc t Acc t Acc t Acc one-Tree-k-DF (SGPCO) 51.01 98.5 306.48 47 69.23 71.05 29.06 61.68 48.91 21 one-Tree-k-DF (RO) 54.13 98.5 291.60 47 69.45 71.28 28.76 61.68 51.61 21 DF 491.87 98.5 426.90 42 487.43 70 168.45 63.83 470.03 21 BS-1 242.08 98.5 127.35 42.5 434.61 55.5 74.35 62.46 426.22 12.4 108.18 98.57 House-Hotel t Acc 395.66 98,57 370.43 98,57 363.37 98,57 485.05 98,57 BS-100 293.45 58.7 475.69 31.0 486.71 55.5 211.74 10.3 499.21 4.3 478.91 98,57 BP 217.81 98.5 295.20 52 352.36 70 42.60 60.40 466.81 21 308.71 98.57 FBP 97.63 98.5 197.12 38.5 250.57 70 36.53 61.35 449.06 15 189.07 98.57 H 222.25 96.21 359.95 43 350.40 58.96 51.19 54.76 495.45 18.88 288.68 98.57