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Abstract
In the context of graph-based representations, comparing and measuring the dissimilarities

between graphs can be done by solving the Graph Edit Distance (GED) problem. It is well
known and embedded in many application fields such as Computer Vision and Cheminformat-
ics. GED is a NP-hard minimization problem, therefore the optimal solution cannot be found
in reasonable time. The GED problem has been addressed by exact approaches like Mixed
Integer Linear Programs (MILP) formulations and heuristic approaches like beam-search, bi-
partite graph matching among others. Recently, a novel heuristic, called local branching
(LocBra) for the GED problem, has been proposed and shown to be efficient. In this work,
the focus is on evaluating LocBra with other competitive heuristics available in the literature
from an application point of view. Moreover, it tries to answer the following question: is it
important to compute an accurate GED regarding the final applications? Similarity search
and graph matching are considered as final applications. Three experiments are conducted to
evaluate the accuracy and efficiency of the heuristics. The quality of the obtained solutions
and matching w.r.t. optimal solutions and ground-truth matching is studied. The results of
those experiments show that LocBra has a high correlation with the optimal solutions and the
ground-truth matching.

1 Introduction
A very convenient and efficient way to model objects and patterns is to use graph-based repre-
sentations. Graphs provide a satisfactory structural representation of an object, by defining the
main components that form the object using vertices, and drawing the relations between them
using edges. More information and characteristics can be stored in the graph by assigning la-
bels/attributes to vertices and edges. Attributed graphs have been actively used in many fields,
such as Pattern Recognition to perform object recognition, image registration, tracking and many
other applications [Sanfeliu et al., 2002]. Also, attributed graphs form a natural representation of
the atom-bond structure of molecules, therefore they have applications in Cheminformatics field
[Raymond and Willett, 2002]. Once the graphs representing the objects are at hand, tasks such
as graph comparison and finding the (dis)similarities between graphs can be performed, leading
to finding the best matching between them. The matching is expressed by determining the cor-
respondences between vertices and edges of graphs based on the attributes carried on them. The
matching process must be tolerant to the differences in the topology and attributes of the graphs,
since it is unlikely to have isomorphism between graphs in real-life scenarios. This is known as
Error-Tolerant Graph Matching (ETGM) class of problems, which are difficult to deal with, due
to their computational complexity.

One of the most important problems that belongs to ETGM class is the Graph Edit Distance
(GED). It consists in finding the minimum cost needed to transform one graph into another,
through a series of edit operations [Bunke and Allermann, 1983]. The possible edit operations are
substitution, insertion and deletion of vertices or edges, with a cost associated to each operation.
The GED problem has been shown to be a generalization of other graph matching problems
(e.g. maximum common subgraph or graph and subgraph isomorphism), by simply changing
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the cost metric properties [Bunke, 1997, Bunke, 1999]. [Stauffer et al., 2017] provide a taxonomy
for the application fields: Image Analysis, Handwritten Document Analysis, Biometrics, Bio and
Cheminformatics, etc. All these applications require performing graph searches among databases
of graphs. For instance, an unknown graph that models an object in an image must be compared
with all graphs in a database of known objects in order to find similarities. [Zeng et al., 2009]
classify the graph searches into three categories, for a database of graphs D = {g1, g2, ..., gn}, and
a query graph q:

• Full search: find all graphs gi in D that are the same as q,

• Subgraph search: find all graphs gi in D that contain or are contained by q,

• Similarity search: find all graphs gi inD that are similar to q, based on some defined similarity
measure.

The GED problem can be involved in the three aforementioned categories, and it has become
widely considered as a dissimilarity measure. In the context of similarity search, GED is applied
to perform classification of graphs and graph retrieval.

However, and since graphs are flexible and can be large and complex, in the case of model-
ing complex patterns and objects, solving to optimality the GED problem becomes difficult and
intractable in practice. In fact, GED has been proven to be in the class of NP-hard problems
[Zeng et al., 2009]. In the literature, both exact and heuristics methods can be found.

In the exact context, the GED problem was addressed by exact methods based on mathe-
matical programming, and more precisely by Mixed Integer Linear Program (MILP) formulations.
[Lerouge et al., 2017] have proposed two MILP formulations (F1 and F2 ) to solve the GED prob-
lem. F1 simply minimizes the cost of assigning the vertices plus the cost of assigning the edges.
F2 is a reformulation of F1 with a reduced number of variables and constraints. Another in-
teresting MILP formulation (MILP JH) is introduced by [Justice and Hero, 2006] for the specific
case, where the attributes on edges are ignored and the edge edit operations have unitary costs.
Nevertheless, MILP JH was shown to be the most efficient in solving the GED problem for this
specific case [Lerouge et al., 2017].

Besides the exact methods, researchers have designed fast heuristics to solve the problem and
provide good quality solutions. For instance, one of the famous heuristics is the Bipartite Graph
Edit Distance (BP), which was developed by [Riesen et al., 2007]. The main advantage of BP is
that it is fast and can solve large and hard instances in a short amount of time. It breaks down
the GED problem into a Linear Sum Assignment Problem (LSAP), by computing a special cost
assignment matrix for the vertices sets of the two graphs. The cost matrix covers all possible
vertices assignments, e.g. cost of assigning one vertex to another, or cost of deleting/inserting
that vertex. In the same cost matrix, it embeds an estimation cost for every vertices assignment,
which stands for the cost of assigning the edges connected to the current vertices. Then, the
LSAP problem is solved by the Hungarian method [Munkres, 1957] in O

(
(n+m)3

)
time, with

n and m the number of vertices of the two graphs. BP is considered as a fast heuristic, but it
only considers local structures around vertices, rather than a global one. Two improved versions
of BP are proposed afterwards by [Serratosa, 2015], Fast Bipartite GED (FBP) and Square Fast
Bipartite GED (SFBP). Both suggest modifications (rectangular and square) to the cost matrix in
order to boost the solution of BP. The same author has conducted a study on the three bipartite
methods to compare their accuracy and running time under different settings, in the classification
context. Later, an extended version of BP is also presented by [Ferrer et al., 2015], referred to as
SBPBeam. It combines BP heuristic with a beam-search heuristic. SBPBeam uses BP to compute
a solution and then using a beam-search approach, it tries to improve the solution by swapping
two matched vertices and recomputing the GED. Beam-search constructs the search tree for all
possible vertices swapping, but only processes the first α nodes in the tree (with α the beam
size parameter). In a recent work, [Bougleux et al., 2017] have proposed two heuristics Integer
Projected Fixed Point (IPFP) and Graduate Non Convexity and Concavity Procedure (GNCCP).
Both are adapted to operate over a Quadratic Assignment Problem (QAP) that models the GED
problem. The heuristics aim at approximating the quadratic objective function to compute a
solution and then improve it by applying projection methods. The computation of a good initial
solution is crucial to obtain good solutions in the end. Both heuristics use as an initial solution
the one computed by BP heuristic. Also recently, an innovative approach to deal with the GED
problem has been proposed by [Darwiche et al., 2018]. It introduces a new heuristic called Local
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Branching (LocBra), which is an adapted version of the general local branching metaheuristic
originally proposed by [Fischetti and Lodi, 2003]. The idea is to solve MILP formulations, within
a branching heuristic, to perform local searches in defined regions in the solution space. LocBra is
reviewed in the following sections.

The present work aims at exploring the efficiency and accuracy of the most promising heuristics
that solve the GED problem. It is also a follow up to the paper by [Darwiche et al., 2018] that
presented LocBra heuristic. LocBra was tested against the heuristics available in the literature and
was proven to be efficient in minimizing the GED distance. In this work, three application-oriented
experiments are proposed to evaluate the heuristics. The target of the first experiment is to show
the link between the optimal solutions and the solutions computed by the heuristics: heuristics
that return solutions close the optimal ones are considered to be accurate. Such an evaluation
is classic in the literature. The second experiment is designed in similarity search context. A
query graph is compared to each graph of a database thanks to a given GED heuristic used as a
distance. Then, distances are sorted in ascending order to obtain a ranking. The target of this
experiment is to compare the ranking given by all the heuristics against the optimal ranking given
by optimal methods. Though, this kind of evaluation has not been done when evaluating GED
heuristics. Last and third experiment studies the relation between the ground-truth matching
given by human experts and the matching computed by the heuristics. Also, this evaluation is
not common in the context of heuristics comparison, in spite of its importance. Visualizing the
computed matching and comparing it with the ground-truth matching enable assessing the impact
of mismatched vertices. The contribution of this paper is then, the study of application-dependent
criteria to evaluate GED heuristics in order to decide if a good minimizer is also good in satisfying
applications requirements. In addition, showing that second and third experiments are important
when evaluating GED heuristics. The results of the experiments will reveal which heuristic is the
most accurate in terms of distance, ranking and matching.

The remainder is organized as follows. Section 2 presents the GED problem and a review of
the MILP JH formulation. Section 3 discusses the GED applications and challenges. Section 4
is devoted to review the LocBra heuristic. Then, section 5 reports the results of the intensive
computational experiments. Finally, Section 6 highlights some concluding remarks.

2 GED definition and MILP JH model
An attributed graph is a 4-tuple G = (V,E, µ, ξ) where, V is the set of vertices, E is the set of
edges, such that E ⊆ V ×V , µ : V → LV (resp. ξ : E → LE) is the function that assigns attributes
to a vertex (resp. an edge), and LV (resp. LE) is the label space for vertices (resp. edges).

Next, given two graphs G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′), solving the GED problem
consists in transforming one graph source into another graph target. To accomplish this, GED
introduces the vertices and edges edit operations: (u→ v) is the substitution of two nodes, (u→ ε)
is the deletion of a node, and (ε → v) is the insertion of a node, with u ∈ V, v ∈ V ′ and ε refers
to the empty node. The same logic holds for the edges. The set of operations that reflects a valid
transformation of G into G′ is called a complete edit path, defined as λ(G,G′) = {o1, ..., ok} where
oi is an elementary vertex (or edge) edit operation and k is the number of operations. GED is
then

dmin(G,G′) = min
λ∈Γ(G,G′)

∑
oi∈λ

`(oi) (1)

where Γ(G,G′) is the set of all complete edit paths, dmin represents the minimal cost obtained by
a complete edit path λ(G,G′), and ` is the cost function that assigns the costs to elementary edit
operations.

MILP JH is a model proposed by [Justice and Hero, 2006] to solve the GED problem. The
main idea consists in determining the permutation matrix minimizing the L1 norm of the difference
between adjacency matrix of the input graph and the permuted adjacency matrix of the target
one. The details about the construction of the model can be found in [Justice and Hero, 2006].
The model is as follows:

min
x,s,t∈{0,1}N×N

(
f(x, s, t) =

N∑
i=1

N∑
j=1

`
(
µ(ui), µ

′(vj)
)
xij +

(
1

2
· κ · (sij + tij)

))
(2)
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such that
N∑
k=1

Aikxkj −
N∑
c=1

xicA
′
cj + sij − tij = 0 ∀i, j ∈ {1, 2, ..., N} (3)

N∑
i=1

xik =

N∑
j=1

xkj = 1 ∀k ∈ {1, 2, ..., N} (4)

where A and A′ are the adjacency matrices of graphs G and G′ respectively, ` : (µ(ui), µ
′(vj))→

R+ is the cost function that measures the distance between two vertices attributes. As for x, s and
t, they are the permutation matrices of size N × N , and of boolean type, with N = |V | + |V ′|.
Besides, x represents the vertices matching i.e. xij = 1 means a vertex i ∈ V ∪ {ε} is matched
with vertex j ∈ V ′ ∪ {ε}. While s and t are for edges matching. Hence, the objective function
(Eq. 2) minimizes both, the cost of vertices and edges matching. As for constraint 3, it is to
make sure that when matching two couples of vertices, the edges between each couple have to be
mapped. Constraint 4 guarantees the integrity of x i.e. one vertex in G can be only matched with
one vertex in G′. This model has a limitation that it does not consider the attributes on edges, so
edge substitution cost is 0 while deletion and insertion have a κ ∈ R+ fixed cost.

3 GED applications and challenges
GED has been used in many application fields, as reported by [Stauffer et al., 2017] who provided
a taxonomy for these fields: Image Analysis, Handwritten Document Analysis, Biometrics, Bio-
and Chem-informatics, Knowledge and Process Management, Malware Detection, and others ap-
plications. In Image Analysis field, some of GED applications are: object detection and tracking,
image registration and 3D image analysis. GED can be applied to Handwritten Document Anal-
ysis to perform for example Keyword Spotting. In Cheminformatics, GED is used to measure
the dissimilarities between the graphs modeling chemical molecules. This enables, for instance,
grouping molecules that share the same structure (clustering). In all these fields and applications,
a common task is graph comparison. So, when a new/unknown graph comes up and the goal is to
search in a database of graphs looking for similar or exact graphs. [Zeng et al., 2009] have classi-
fied the graph searches in three categories: i- Full search, ii- Subgraph search and iii- Similarity
search. Furthermore, in most of the aforementioned applications, the graph search mostly used is
the similarity search. The reason is that the graph query may differ from the graph models stored
in the database. As an example, graphs that model patterns in images contain extra vertices and
edges, because the image quality may be poor or noisy. Therefore, graph and subgraph isomor-
phism might not be useful as much as similarity search, which is flexible and tolerates the structure
and attributes differences in graphs. In addition, similarity search is effective in supervised classi-
fication by k-nearest neighbors and unsupervised classification by k-medians clustering. Another
important application using the similarity search is graph retrieval. Subsequently, GED problem
fits in this context and can be used to perform similarity searches.

The GED problem leads to minimize the distance between two graphs by solving an ETGM
problem. The matching consists of the operations applied on the two sets of vertices. It is also called
the assignment of the vertices of both graphs. For two sets V = {u1, u2, u3} and V ′ = {v1, v2}, a
matching is expressed with the matrix:

Matching =

u1 u2 u3 ε( )
1 0 0 0 v1

0 0 1 0 v2

0 1 0 0 ε

Whenever a vertex u ∈ V (resp. in v ∈ V ′) is matched with ε, it is said to be deleted (resp.
inserted), otherwise u is substituted with v. The same as vertices matching, edges matching
can be represented by a matrix. It is of interest to end-users to evaluate and understand the
matching, by looking at the matched components for a query graph with similar graphs found in
the database. Actually, the matching can help interpreting the results and detecting relevant spot
patterns. GED problem enables having both the distance and the matching, which is convenient to
end-users. Unlike, other similarity search approaches such as graph embedding into vector space,
the matching is lost and cannot be reconstructed.
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Figure 1: Local branching flow. a) depicts the left and right branching. b) shows the neighborhoods
in the solution space

Another aspect to consider when talking about GED is the cost of edit operations. Solving the
GED problem implies minimizing the edit operations cost to transform one graph into another.
Each edit operation has an associated cost function. Cost functions can take into account vertex
or edge attributes. As well, cost functions must reflect the user need, thus they can be learned to
fit a specific goal. For instance, the goal is to reduce the gap between the ground-truth matching
and the optimal matching. The ground-truth matching is usually given by human experts (aka
Oracle) and reflects the true matching between pair of graphs. When the ground-truth is missing,
cost functions can also be hand-crafted based on domain-dependent knowledge introduced by an
expert of the application.

Finally, solving the GED problem implies a similarity search that is based on a distance function.
Many heuristics can be found in the literature that solve the GED problem. Some of them are
designed to converge very fast, while others favor the quality of the solutions over the running time.
In all cases, there is a compromise between the running time of the heuristic and the accuracy of the
solution returned. The only way to overcome this is by checking the application requirements and
factors like graph size, density, type of attributes, which are in general responsible in making the
problem hard to solve. An application like object detection in images is, in most cases, considered
as a real-time application. Therefore, there is a need for having a very fast algorithm, but on the
other hand, the graphs being compared should be of small sizes. In other applications, such as
finding similar graphs of complex chemical molecules, it is affordable to spend extra running time
in order to obtain accurate results. At the end, this compromise is a hard constraint, but there
are several promising attempts and heuristics in the literature. Based on these arguments and
regarding the final application, is it worth spending time to compute accurate solutions? What is
the impact of a better solution on the similarity search or on the matching? These are the main
questions that the experimentation conducted will try to answer on.

4 Local Branching Heuristic for the GED problem
Local Branching is a general MILP metaheuristic presented by [Fischetti and Lodi, 2003]. MILP
formulations are known to be efficient in modeling complex combinatorial optimization problems.
These formulations can be solved by using black-box solvers that try to find the optimal solution.
Such solvers (e.g. CPLEX) are powerful and equipped with an arsenal of effective algorithms
to solve MILP formulations. However, they are not capable all the time of finding the optimal
solution, especially in the case of large and complex instances, due to high computational time and
memory size needed. To benefit from the power of the solvers, local branching employs a solver to
explore the solution space of MILP formulation in a defined scheme. It performs a series of local
searches and focuses the search in defined regions looking for good quality solutions. The work
presented by [Darwiche et al., 2018] provides an adapted version of local branching for the GED
problem. MILP JH is chosen in the implementation of local branching and CPLEX is picked as a
solver. LocBra is based on 4 main ingredients:
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• Neighborhood definition: giving a solution xp ∈ {0, 1}N×N to the problem, N(xp, k) is the
k-opt neighborhood around xp, with k a given positive integer. N(xp, k) is defined by adding
the following local branching constraint to MILP JH :

∆(x, xp) =
∑

(i,j)∈Sp

(1− xij) +
∑

(i,j)/∈Sp

xij ≤ k (5)

with, S0 = {(i, j) : xpij = 1}. The neighborhood set contains the solutions that are within a
distance no more than k from xp (in the sense of the Hamming distance).

• Intensification: after defining the N(xp, k) by adding the local branching constraint, LocBra
solves the corresponding MILP formulation by CPLEX. This intensifies the search by ex-
ploring the local neighborhood around xp looking for a new and better solution. This step
implies focusing the search into a small region of the solution space instead of exploring the
whole space.

• Complementary intensification: it may happen that, when exploring the neighborhoodN(xp, k),
CPLEX fails to compute a feasible solution in the imposed CPU time limit. This corresponds
to the case where this neighborhood is too large. Then, a complementary intensification phase
is performed in the restricted neighborhood N(xp, k/2).

• Diversification: this step is introduced when the complementary intensification step fails to
find an improved solution, which basically interpreted as the current solution xp being a local
optimum. The main goal of this step is to skip local minimum and switch the exploration to
new regions in the solution space. To do so, the following constraint is added to MILP JH :

∆′(x, xp) =
∑

(i,j)∈Sp
imp

(1− xij) +
∑

(i,j)/∈Sp
imp

xij ≥ k_dv (6)

with Bimp the index set of binary important variables and Spimp = {(i, j) ∈ Bimp : xpij = 1}.
The notion of important variables is explained later.

LocBra procedure is detailed in Algorithm 1 putting all the above 4 ingredients together. The
method halts when the total time set is reached and the best solution found is returned. Figure 1
gives an example of LocBra flow. Starting from an initial solution x0 at node 1, the neighborhood
N(x0, k) is defined by adding the constraint ∆(x, x0) ≤ k. At node 2, an intensification step is
performed and a new improved solution x1 is found. Note that, in order to avoid visiting a solution
already seen, the last constraint becomes ∆(x, x0) ≥ k + 1. Again, the neighborhood N(x1, k) is
defined and the intensification is triggered leading to x2 (node 4). However, the intensification
at node 6 seems to have failed at finding an improved solution. Therefore, a complementary
intensification is applied at node 7. Since also, it did not find a better solution, a diversification
step is performed to skip this region of the solution space. Finally, Figure 1-b shows the evolution
of the solutions searches and neighborhoods in the solution space.

The diversification step has an important role in escaping local optima. An improved version of
the original one by [Fischetti and Lodi, 2003] is proposed that is specific to the GED problem. The
diversification constraint 6 is introduced over the set Bimp, which is the index set of important
binary variables. The selection of these variables is based on the assumption that one variable
is considered important if changing its value from 1 → 0 (or the opposite) highly impacts the
objective function value. Forcing the solver to find a new solution with changes to the values
of these variables enables changing the search region in the search space and the matching. So,
Bimp is defined as follows: i- it computes a special cost matrix [Mij ] for each possible assignment
of a vertex ui ∈ V ∪ {ε}, to a vertex vj ∈ V ′ ∪ {ε}. Each value Mij = cij + θij , where cij is
the vertex edit operation cost induced by assigning vertex ui to vertex vj , and θij is the cost of
assigning the set of edges Ei = {(ui, w) ∈ E} to Ej = {(vj , w′) ∈ E′}. This assignment problem, of
size max(|Ei|, |Ej |)×max(|Ei|, |Ej |), is solved by the Hungarian algorithm [Munkres, 1957] which
requires O

(
max(|Ei|, |Ej |)3

)
time. ii- the standard deviation is computed at each row of [Mij ],

resulting in a vector σ = [σ1, ..., σ|V |]. Basically, a σi with a high value indicates that the variables
representing assignments with vertex ui have impact on the objective function value more than
the other variables. iii- To select ui vertices, the values of vector σ are split into two clusters
Cmin and Cmax, using a simple clustering algorithm. iv- Finally, for every σi belonging to Cmax

6



Algorithm 1: LocBra algorithm
1 Function LocBra(k, total_time_limit)

Output: bestSol, opt
2 curr_sol← ComputeInitialSol();
3 best_sol← curr_sol ;
4 while tl < total_time_limit do
5 curr_sol← Intensification(k);
6 if curr_sol is worse than best_sol then
7 curr_sol← Intensification(k/2)
8 end
9 if curr_sol is still worse than best_sol then

10 curr_sol← Diversification()
11 end
12 UpdateTime(tl);
13 end
14 End

cluster, the indices of all binary variables xij that correspond to the assignments of vertex ui are
added to Bimp. Consequently, the local structure of a vertex is considered to assess its influence on
the objective function value. This version of the diversification is more efficient that the original
one proposed by [Fischetti and Lodi, 2003], because it includes information about the instance at
hand.

5 Experimentation Results
This section presents the experimentation results to the different tests conducted on LocBra and
the heuristics selected from the literature. The goal of the experiments is to study the accuracy
of each heuristic and its influence in GED applications. In the following sub-sections, first the
experiments protocol is explained, followed by the heuristics settings and then the results of each
experiment. Furthermore, all the experiments results and settings, databases and cost functions,
in addition to videos highlighting the matching and more, can be found on this website1.

5.1 Experiments Protocol
In the following, three experiments are conducted in order to compare the heuristics by examining
the quality of the solutions and matching computed with: optimal solutions, ranking (searching
for the nearest neighbor graphs) and ground-truth matching.

1st Experiment As in the paper [Darwiche et al., 2018], this first experiment will answer the
following question: which heuristic is the best GED minimizer? It is about studying the closeness
of the solutions returned by the heuristics to the optimal ones. The metric used in this experiment
is the deviation percentage: given an instance I and a heuristic H, deviation percentage is equal
to solutionH

I −optimalI
optimalI

× 100, with optimalI the optimal solution for I.

2nd Experiment An important question is brought up: what is the impact of the GED heuristics
on the (dis)similarity search? The second experiment intends to answer this question by evaluating
the ranking of the graphs, which is considered as an important task in graph retrieval. For a target
graph, the GED is computed against the rest of the graphs in the database. Then ordering the
obtained solutions by ascending order will show first the graphs with high resemblance w.r.t.
the target one. Consequently, the experiment will compare the orders provided by the heuristics
and the order provided by an exact method. It proceeds as follows: assuming a graph database
with 5 graphs DG = [g1, g2, ..., g5]. Starting with graph g1, the optimal and heuristics solutions
(distances) are computed for all possible pairs of graphs e.g. (g1, g1); (g1, g2); ...(g1, g5). Then,
graphs are ordered by ascending order based on the GED solutions. For instance, assuming that

1https://sites.google.com/site/gedlocbra/
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Table 1: LocBra vs. heuristics from the literature on PAH instances
LocBra SBPBeam IPFP GNCCP

tavg 3.03 4.38 1.45 2.63
davg 0.35 371.14 117.37 81.04
ηI 8702 100 491 1143

the optimal order for g1 is gopt1 = [g1, g2, g4, g3, g5] and a heuristic H order is gH1 = [g1, g5, g4, g3, g2].
Then, the metric used is Kendall rank correlation coefficient τb. Kendall is a statistic used to study
the correlation between two ranked/sorted ordinal variables [Agresti, 2010]. Computing τb consists
in measuring the degree of concordance between the two ranked variables. An ordinal variable is
a categorical variable for which the possible values are ordered. The correlation τb is computed
between gopt1 and gH1 . Then, to analyze the τb values, a p-value test is applied, which is a statistical
test based on the null hypothesis that assumes two variables (vectors) are uncorrelated and τb = 0.
The alternative hypothesis is that the variables are correlated, and τb is non-zero. If p-value is
smaller than a threshold (referred to as significance level), then the null hypothesis is rejected,
and the alternative is accepted. τb and p-value are computed for the rest of the heuristics after
ordering the solutions for all pairs of graphs. So far, this is done for g1, the same process is repeated
for the rest of the graphs in the database. Finally, the p-values obtained for each graph and for
each heuristic are grouped by heuristics, and the average of the values smaller than the threshold
are calculated for each heuristic. The heuristic with the highest percentage, means that the null
hypothesis is rejected and eventually the solutions returned by it, are strongly correlated with the
optimal ones.

3rd Experiment The main question to be answered by this experiment is: does the best GED
minimizer guarantees finding the ground-truth matching? For many graph databases, there is a
ground-truth matching that is given by human experts (aka Oracle). They represent the true
matching expected to be obtained between each pair of graphs. Therefore, this third experiment
consists in studying the closeness of the matching computed by the heuristics to the ground-truth
matching. The metric used here is the Hamming Distance between the ground-truth and heuristics
matching. A matching is represented through a binary matrix, each value refers to an assignment
of two vertices, e.g. [xij ] is a matching matrix, where i and j are the indices of two vertices
ui ∈ V ∪ {ε} and vj ∈ V ′ ∪ {ε}. The Hamming distance simply counts the number of positions
at which the corresponding values are different. For two matching matrices [xij ] and [yij ], with
i ∈ {1, 2, ..., N}, j ∈ {1, 2, ...,M} and N = |V |+ 1, M = |V ′|+ 1,

HD(x, y) =

N∑
i=1

M∑
j=1

(1− δ(xij , yij)) (7)

where δ : R2 → {0, 1} is the Kronecker delta function, it returns 1 when xij = yij and 0 otherwise.
Note that the value obtained is then normalized by dividing with N + M , in order to return
representative quantities between [0, 1]. The normalized distance is denoted by ĤD. Therefore,
what is of interest is when ĤD = 0, because it means that the heuristic matching is equivalent to
the ground-truth matching.

In summary the experiments are categorized as follows.
Index Evaluation Metric Application

Distance Deviation Near-optimal quality
Ranking Kendall correlation Similarity search/graph retrieval
Matching Hamming Distance Result interpretation

5.2 Comparative heuristics and experimentation settings
Very recent and efficient heuristics are selected in the experiments: SBPBeam [Ferrer et al., 2015],
IPFP and GNCCP [Bougleux et al., 2017]. SBPBeam is picked over FBP and SFBP, since they
were mainly introduced to improve the running time of BP. While SBPBeam tries to improve the
solution of BP, which is in line with the purpose of these experiments. [Darwiche et al., 2018]
conducted extensive experiments on these heuristics, considering two versions of each: original
and extended. The original versions are the heuristics with their default parameter values as they
were published by their authors. The extended versions are the heuristics with bigger parameter
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Table 2: LocBra vs. heuristics from the literature on MUTA instances.
S 10 20 30 40 50 60 70 Mixed
optI 100 100 100 99 92 71 35 91

LocBra tavg 0.17 1.12 212.36 364.86 573.51 727.58 474.97 276.79
davg 0.00 0.00 0.00 0.06 0.04 0.47 0.76 0.22
ηI 100 100 100 98 97 70 28 84

SBPBeam tavg 0.84 10.02 47.65 139.75 322.06 590.47 1144.21 279.17
davg 20.43 44.90 76.45 82.54 99.55 99.68 107.02 23.73
ηI 14 10 10 10 10 10 10 11

IPFP tavg 1.20 9.62 48.90 115.14 237.91 469.15 474.12 240.32
davg 3.44 10.18 16.45 17.21 19.15 20.18 28.19 5.37
ηI 69 29 14 11 10 10 10 21

GNCCP tavg 0.55 6.41 29.80 81.24 193.61 375.88 951.65 140.51
davg 3.23 10.67 24.20 21.79 24.69 18.67 36.57 10.14
ηI 81 34 4 6 5 9 5 17

values in order to extend their running time, and so they can reach the time given to LocBra.
This is to make the comparison consistent and fair by allowing all heuristics to run approximately
the same amount of time. Based on the results obtained in [Darwiche et al., 2018], LocBra was
more accurate in comparison to both original and extended versions of the heuristics. In addition,
the extended versions of the heuristics performed better than the original versions. Hence, the
experiments in this paper considers only the extended versions. For each experiment the appro-
priate parameter values are calculated first and then, the heuristics are launched. The parameters
of each heuristic are: LocBra with k the neighborhood size, k_dv distance from current solu-
tion when diversifying, total_time_limit is the total running time before the algorithm halts,
node_time_limit the maximum running time for intensification, UB the time limit to compute a
first solution; SBPBeam-α with α the beam size; IPFP-it with it the number of iterations before
the algorithm stops; GNCCP-d with d the quantity to be reduced from the variable that controls
the concavity and convexity of the objective function.

Based on LocBra definition, it uses a MILP formulation and a MILP solver. MILP JH is
the formulation used in the implementation of LocBra and CPLEX 12.6.0 is the solver. The
algorithm is implemented in C language. All tests were executed on a machine with the following
configuration: Windows 7 x64, Intel Xeon E5 4 cores and 8 GB of RAM. The optimal solutions
were obtained by running CPLEX without time and memory limitations. However, not all optimal
solutions were found, because for very large instances CPLEX exploits all the available resources
(8 GB RAM) on the machine and halts returning the best solution found. The number of optimal
solutions is indicated in the results.

5.3 Accuracy of the heuristics w.r.t. optimal solutions
This experiment focuses on studying the closeness of the heuristics solutions to the optimal solu-
tions. To this end, two databases MUTA [Abu-Aisheh et al., 2015] and PAH [Brun, 2016], out of
many, are selected from the public datasets [Abu-Aisheh et al., 2015, Brun, 2016, Moreno-García et al., 2016].
Both databases consist of graphs representing chemical molecules. In MUTA, 8 subsets can be
found, the first 7 subsets contain 10 graphs, each of the same size (same number of vertices) start-
ing from 10 until 70 vertices. The last subset has 10 graphs of mixed sizes. This database is
interesting because it has large graphs, and they are known to be difficult for matching algorithms.
PAH database consists of 94 graphs of different and small sizes (the largest graph has 28 vertices).
Each pair of graphs is considered as an instance. Therefore, MUTA database holds a total of 800
instances (100 per subset) and 8836 instances for PAH database. Regarding the cost values as-
signed to edit operations, they depend on the database and are already defined in their references.
For instance, vertices (resp. edges) edit operations are substitution, deletion and insertion and
referred to as cvs, cvd, cvi (resp. ces, ced, cei). Based on [Abu-Aisheh et al., 2015], the cost values
for MUTA are: cvs = 5500, cvd = cvi = 5500, ces = 0, ced = cei = 825. Note that cvs becomes
0 when two vertices have the same attribute values. Moreover, for PAH based on [Brun, 2016]:
cvs = 0, cvd = cvi = 3, ces = 0, ced = cei = 3 . Finally, the heuristics parameter values are set
as follows.

For MUTA graphs:
LocBra k = 20, k_dv = 30, total_time_limit = 900s,

node_time_limit = 180s, UB = 180s
SBPBeam-α α = 400

IPFP-it it = 20000
GNCCP-d d = 0.03
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For PAH graphs:
LocBra k = 20, k_dv = 30, total_time_limit = 12.5s,

node_time_limit = 1.75s, UB = 1.75s
SBPBeam-α α = 140

IPFP-it it = 2000
GNCCP-d d = 0.09

The deviation percentages davg are computed as explained in sub-section 5.1, 1st experiment
paragraph, for each heuristic. The average running time tavg is recorded as well. The number of
solutions equal to the optimal ones obtained by one heuristic is represented by ηI . All the optimal
solutions are known for PAH database. However, for MUTA and especially for subsets with big
graphs, not all optimal solutions are found. The number of optimal solutions known are indicated
in the results for each subset. The results are shown in Tables 1 and 2.
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Figure 2: Histograms showing τb distribution for each heuristic for MUTA-30 (a) and PAH (b)

Results and analysis The results of PAH instances are reported in Table 1, LocBra has the
lowest deviation percentage at 0.35%, followed by GNCCP with 81%. Clearly, the gap is big
between the first and the second heuristic. This is also reflected by the number of solutions
obtained by LocBra that match the optimal solutions with highest ηI = 8702, over 8836 instances
in total. The fastest is IPFP with 1.45s, but the deviation percentage is very high. Regarding the
results of MUTA, which are presented in Table 2, the same conclusion as before on PAH instances
can be drawn. LocBra has scored the lowest deviation percentages and highest number ηI . For
easy instances (subsets 10 to 30), LocBra is at 0% deviation. On hard instances (subsets 40 to 70),
LocBra deviation is always less than 1%. Also, on mixed subset it has the highest ηI = 84 out of
91 optimal solutions. IPFP comes in the second place when considering the deviation percentages
for all subsets but subsets 60 and 70, where GNCCP appears to have better deviations. Contrary
to PAH results regarding the running time, GNCCP is the fastest with smaller tavg, however not
for all subsets. LocBra is faster on subsets 10 and 20, while IPFP is faster on subset 70.

These results show that LocBra have yielded near-optimal solutions. The rest of the heuristics
are outperformed by LocBra in terms of solution quality and closeness to the optimal. However, it
is still not clear which heuristic is the fastest, because of inconsistent results obtained on the two
databases in terms of running time. For small instances, the heuristics have close running time
but the difference starts to grow with bigger instances, in favor of GNCCP and IPFP.

5.4 Accuracy of the heuristics in similarity search
The purpose of this experiment is to examine the correlation between the ranking obtained by
the heuristics and the optimal ranking. The MUTA subset with graph size 30 is picked in this
experiment, because all optimal solutions are known for these instances (100 instance) and 30 is
the average graph sizes. All PAH instances (8836 ) are selected to be part of this experiment as
well. The same settings and parameters are used as in the first experiment.

For each database, the Kendall correlation τb and p-values are computed for every graph. The
p-values are collected and averaged as explained in sub-section 5.1, 2nd experiment paragraph. The
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Table 3: Average p-value for each heuristic on MUTA-30 instances
Average p-value

LocBra 100
SBPBeam 50
IPFP 50
GNCCP 70

Table 4: Average p-value for each heuristic on PAH instances
Average p-value

LocBra 100
SBPBeam 14
IPFP 21
GNCCP 23

results obtained are reported in Tables 3 and 4. Furthermore, Figure 2 shows the τb correlation
distribution for both MUTA-30 and PAH.

Results and analysis For MUTA-30 instances in Table 3, the average p-value is 100% for
LocBra, which means that the null hypothesis is always rejected for all instances. Hence, there is
a strong correlation between the ranking of LocBra and the optimal ranking. Moreover, GNCCP
has scored 70%, higher than SBPBeam and IPFP (both 50%). GNCCP should reject the null
hypothesis in 70% of the cases. Similar results are noted on PAH instances in Table 4, where
LocBra is still at 100% and the rest of the heuristics got lower percentages and are far from LocBra.
Regarding the correlation distribution shown in the histograms in Figure 2; chart (a) shows the
distribution for MUTA-30, where all the values of LocBra are uniformly in bin 1. This means that
LocBra ranking is perfectly correlated with the optimal ranking. GNCCP comes in the second
place but the correlation values are distributed in a wide range between [0.2, 1]. IPFP shows poor
correlation with the optimal and has negative value (−0.2) for one instance. On PAH instances,
again the order is conserved: LocBra, GNCCP, SBPBeam, IPFP. LocBra has correlation values
between [0.6, 1], which proves that the heuristic ranking are very similar to the optimal ranking.

The experiment has proved that LocBra ranking is strongly correlated with the optimal ranking
and therefore, LocBra is suitable for GED applications, especially in the contexts of similarity
search and graph retrieval. In other words, the use of inaccurate heuristics may lead to really
wrong results in terms of nearest neighbors of a graph query.

5.5 Accuracy of the heuristics w.r.t. ground-truth matching
The goal of this experiment is to study the matching accuracy of the heuristics and the relation
between the obtained matching and the ground-truth matching, given by the Oracle. The graph
database CMU-HOUSE published by [Moreno-García et al., 2016] is considered to this end. It
contains 111 graphs corresponding to 3-D images of houses, each graph consists of 30 vertices
with attributes described using Shape Context feature vector and the edges are unattributed. The
graphs are extracted from 3-D house images, where the houses are rotated with different angles.
This is interesting because it enables testing and comparing graphs that represent the same house
but positioned differently inside the images. The database also comes with the ground-truth
matching for all pairs of graphs. Two versions of the database are considered in the experiment: one
without attributes (referred to as HOUSE-NA) on the vertices; another with attributes (referred to
as HOUSE-A). It turns out that the first one is harder to solve that the second, because the second
considers the attributes, which helps assigning the vertices and edges. Regarding the cost values
as defined by [Abu-Aisheh et al., 2015], for HOUSE-NA: cvs = 0, cvd = cvi =∞, ces = 0, ced =
cei = 0.5; HOUSE-A: cvs = 0.5 × |µ(u) − µ′(v)|, cvd = cvi = ∞, ces = 0, ced = cei = 0.5, with
u ∈ V and v ∈ V ′. Finally, the heuristics parameters are set as follows.

For HOUSE-NA graphs:
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Figure 3: Hamming distance and time averages for heuristics matching vs. ground-truth matching.
(a) and (b) are the results for graphs without attributes HOUSE-NA, (c) and (d) with attributes
HOUSE-A

LocBra k = 20, k_dv = 30, total_time_limit = 10s,
node_time_limit = 2s, UB = 4s

SBPBeam-α α = 8
IPFP-it it = 400

GNCCP-d d = 0.09

For HOUSE-A graphs:
LocBra k = 20, k_dv = 30, total_time_limit = 2s,

node_time_limit = 0.5s, UB = 1s
SBPBeam-α α = 5

IPFP-it it = 10
GNCCP-d d = 0.01

This experiment includes as well the optimal matching computed using the solver CPLEX. The
reason behind this, is to evaluate the optimal against the ground-truth matching and detect if
they are conformed. This proves the relevance of the edit operations cost values defined for the
database. The hamming distances (ĤD) are computed as explained in sub-section 5.1, 3rd exper-
iment paragraph. Then, the values obtained are grouped by rotation degrees between the graphs
being compared. The average values of hamming distance ĤDavg obtained are depicted in Figure
3 (a) for HOUSE-NA and (c) for HOUSE-A. In the same figure, (b) and (d) respectively show the
average running time variation for each heuristic grouped by rotation degrees as well.

Results and analysis Starting with the ĤDavg for HOUSE-NA (Figure 3-(a)), and before
analyzing the heuristics behaviors, the optimal matching is considered in order to confirm the
relation and closeness between ground-truth and optimal matching. A strong relation is noted
when looking at the optimal line, since it is close to 0 for all rotation degrees. Next, the heuristic
with the smallest values is LocBra for all the rotation degrees. The line is constantly close to 0
and almost linear, which means that LocBra has computed matching very close to the ground-
truth matching. GNCCP and IPFP are at the second and third positions after LocBra, except
for rotated images at 90◦ IPFP outperforms GNCCP and ĤDavg drops to 0.2. SBPBeam comes
last with poor ĤDavg values. The same conclusion can be seen when looking at the chart (c) (in
Figure 3) for HOUSE-A graphs. The heuristics positions are maintained, however an important
remark is that the gap between LocBra, IPFP and GNCCP is reduced. Their lines are very close
to each other and below 0.1 for all rotation degrees. This is due to the fact that the instances
of graphs with attributes are easier to solve, and therefore all the heuristics (except SBPBeam)
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are able to compute accurate matching and close to the ground-truth matching. Remarkably, the
Shape Context features are meaningful and the objective function guides well the exploration of the
solution space. Another important point is that the optimal has scored always the smallest values
except for 60 and 70 degrees, where it is slightly outperformed by LocBra. For the average time
charts, for HOUSE-NA graphs shown in (b), IPFP and LocBra are the fastest, while SBPBeam
and GNCCP are very slow and close to each other. This means that IPFP and LocBra are finding
solutions and converging faster than the others. For the optimal method, as expected, it is not the
fastest because CPLEX spends more time proving the optimality of the solution found. The same
is concluded from chart (d) for HOUSE-A graphs.

To sum up, LocBra has shown to be very competitive and gave the best accuracy and closeness
to the ground-truth matching. Nevertheless, the slightest difference between LocBra and ground-
truth matching could occur on important vertices of the graphs. It is good then to visualize the
matching to see the impact. Such visualization is proposed on the website1.

6 Conclusion
The present work aims at evaluating the recent and efficient heuristics that deal with the GED
problem. It extends the work of [Darwiche et al., 2018] by studying the accuracy and solutions
quality of the heuristics. The experiments conducted by [Darwiche et al., 2018] has proved the
superiority of LocBra over the heuristics available in the literature as a minimizer to the GED
problem. However, these results did not approve the accuracy of the heuristics from an application
point of view. This work focuses on executing application-oriented experiments. It points out the
need of having an accurate (maybe slower) GED method in graph matching or graph retrieval
applications. The conclusions of the experiments are that the quality of the solutions returned by
LocBra are the closest to the optimal ones, the gap between its ranking and the optimal ranking
is negligible as well, leading to a strong correlation with the optimal solutions. The conducted
experiments show that optimal solutions of the GED problem are very close to ground truth
solutions. This, in turn, proves that LocBra is very suitable to be applied in GED applications to
perform full (sub-)graph and similarity searches. LocBra is efficient when dealing with complex
graphs where neighborhoods and attributes do not allow to easily differentiate between vertices.
Therefore, it is suitable for chemical graphs and graphs extracted from images. However, it cannot
be generalized unconditionally since some exceptions or untested scenarios may be encountered in
cases where graphs are a bit different (very sparse, unconnected vertices, ...). Also, LocBra has
a limitation due to MILP JH , which can only be applied when edge edit operations have unitary
costs. Next, more techniques will be investigated in order to boost the solution and convergence
of the method, without degrading the quality and accuracy.
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