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Abstract

Graph edit distance (GED) has emerged as a powerful and flexible graph

matching paradigm that can be used to address different tasks in pattern

recognition, machine learning, and data mining. GED is an error-tolerant

graph matching problem which consists in minimizing the cost of the se-

quence that transforms a graph into another by means of edit operations.

Edit operations are deletion, insertion and substitution of vertices and edges.

Each vertex/edge operation has its associated cost defined in the vertex/edge

cost function. Unfortunately, Unfortunately, the GED problem is NP-hard.

The question of elaborating fast and precise algorithms is of first interest.

In this paper, a parallel algorithm for exact GED computation is proposed.

Our proposal is based on a branch-and-bound algorithm coupled with a load

balancing strategy. Parallel threads run a branch-and-bound algorithm to
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explore the solution space and to discard misleading partial solutions. In the

mean time, the load balancing scheme ensures that no thread remains idle.

Experiments on 4 publicly available datasets empirically demonstrated that

under time constraints our proposal can drastically improve a sequential ap-

proach and a naive parallel approach. Our proposal was compared to 6 other

methods and provided more precise solutions while requiring a low memory

usage.

1. Introduction

Attributed graphs are powerful data structures for the representation of

structured entities. In a graph-based representation, vertices and their at-

tributes describe objects (or part of objects) while edges represent interre-

lationships between the objects. Due to the inherent genericity of graph-

based representations, and thanks to the improvement of computer capaci-

ties, structural representations have become more and more popular in the

field of Pattern Recognition.

Graph edit distance (GED) is a graph matching paradigm whose concept

was first reported in (Sanfeliu and Fu, 1983). The basic idea is to find the best

sequence of edit operation to transform a graph G1 into another graph G2.

The allowed operations are insertion, deletion and/or substitution of vertices

and their corresponding edges. GED can be used as a dissimilarity measure

for arbitrarily structured and arbitrarily attributed graphs. In contrast to

other approaches, it does not suffer from any restrictions and can be applied
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to any type of graph (including hypergraphs (H. Bunke, 1983)). The main

drawback of GED is its computational complexity which is exponential in

the number of vertices of the involved graphs.

Many fast heuristic GED methods have been proposed in the literature

(W. Christmas and Petrou., 1995; Zeng et al., 2009; Fankhauser et al., 2012;

Fischer et al., 2013; Serratosa, 2015; Ferrer et al., 2015; Bougleux et al., 2016).

However, these heuristic algorithms can only find unbounded suboptimal

values. On the other hand, only few exact approaches have been proposed

(Tsai et al., 1979; Justice D, 2006; Riesen et al., 2007; Abu-Aisheh et al.,

2015).

Parallel computing has been fruitfully employed to handle time-consuming

operations. Research results in the area of parallel algorithms for solving ma-

chine learning and computer vision problems have been reported in (Kumar

et al., 1990). These researches demonstrated that parallelism can be ex-

ploited efficiently in various machine intelligence and vision problems such

as deep learning (Deng and Yu, 2014) or fast fourier transform (Van Loan,

1992). In this paper, we take benefit of parallel computing to solve the exact

GED problem.

The main contribution of this paper is an exact parallel algorithm based

on a load balancing strategy for solving the GED problem. This paper lies in

the idea that a parallel execution can help to converge faster to the optimal

solution. Our method is very generic and can be applied to directed or

undirected fully attributed graphs (i.e., with attributes on both vertices and
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edges). By limiting the run-time, our exact method provides (sub)optimal

solutions and becomes an efficient upper bound approximation of GED. A

complete comparative study is provided where 6 exact and approximate GED

algorithms were compared on 4 graph datasets. By considering both the

quality of the proposed solutions and the speed of the algorithm, we show

that our proposal is a good choice when a fast decision is required as in a

classification context or when the time is less a matter but a precised solution

is required as in image registration.

This paper is organized as follows: Section 2 presents the important def-

initions necessary for introducing our GED algorithm. Then, Section 3 re-

views the existing approximate and exact approaches for computing GED.

Section 4 describes the proposed parallel scheme based on a load balancing

paradigm. Section 5 presents the experiments and analyses the obtained

results. Section 6 provides some concluding remarks.

2. Problem Statements

In this section, we first introduce the GED problem which is formally

defined as an optimization problem. Secondly, to cope with the inherent

complexity of the GED problem, the use of parallel computing is argued.

However, the parallel execution of a combinatorial optimization problem is

not trivial and consequently the load balancing question is being raised.

Finally, the load balancing problem is formally defined and presented to

establish the basement of an efficient parallel algorithm.
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2.1. Graph Edit Distance Problem

Attributed graph is defined as a tuple of 4 sets (V , E, µ, ζ) such that:

Definition 1. Attributed Graph
G = (V,E, µ, ζ)
V is a set of vertices
E is a set of edges such as E ⊆ V × V
µ : V → LV such that µ is a vertex labeling function which associates a label
lV to a vertex vi with vi ∈ V , ∀i ∈ [1,|V |]
ζ : E → LE such that ζ is an edge labeling function which associates a label
lE to an edge ei with ei ∈ E, ∀i ∈ [1,|E|]

Definition 1 allows to handle arbitrarily structured graphs with uncon-

strained labeling functions. Labels for both vertices and edges can be given

by a set of integers L = {1, 2, 3, · · · }, a vector space L = Rn and/or a finite

set of symbolic labels L = {x, y, z, · · · }.

GED is an error-tolerant graph matching paradigm, it defines the dis-

similarity of two graphs by the minimum amount of distortion needed to

transform one graph into another (H. Bunke, 1983). GED requires that each

vertex/edge of graph G1 is mapped to a distinct vertex/edge of graph G2

or to a dummy vertex/edge. This dummy elements can absorb structural

modifications between the involved two graphs. More formally, GED can be

defined as follows:

Definition 2. Graph Edit Distance Problem

GED(G1, G2) = min
γ∈Γ(G1,G2)

∑
o∈γ

c(o)

Where Γ(G1, G2) denotes the set of edit paths transforming G1 = (V1, E1, µ1, ζ1)
into G2 = (V2, E2, µ2, ζ2), and c denotes the cost function measuring the
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strength c(o) of edit operation o.

A sequence of edit operations γ that transforms a graph G1 into a graph G2 is

commonly referred to as edit path between G1 and G2. In order to represent

the degree of modification imposed on a graph by an edit path, a cost function

is introduced measuring the strength of the distortions caused by each edit

operation. Consequently, the edit distance between graphs is defined by the

minimum cost edit path between two graphs. Note that the edit operations

on edges can be inferred by edit operations on their adjacent vertices, i.e.,

whether an edge is substituted, deleted, or inserted, depends on the edit

operations performed on its adjacent vertices. An elementary edit operation

o is one of vertex substitution (v1 → v2), edge substitution (e1 → e2), vertex

deletion (v1 → ε), edge deletion (e1 → ε), vertex insertion (ε → v2) and

edge insertion (ε → e2) with v1 ∈ V1, v2 ∈ V2, e1 ∈ E1 and e2 ∈ E2. ε is

a dummy vertex or edge which is used to model insertion or deletion. c(.)

is a cost function on elementary edit operations o. The cost function c(.) is

of first interest and can change the problem being solved. In (Bunke, 1997;

Brun, 2012) a particular cost function for GED was introduced, and it was

shown that under this cost function, GED computation is equivalent to the

maximum common subgraph problem. Neuhaus and Bunke (Neuhaus and

Bunke., 2007) showed that if each elementary operation satisfies the criteria

of a distance (separability, symmetry and triangular inequality) then GED

is metric. Recently, methods to learn the matching edit cost between graphs
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have been published (Cortés and Serratosa, 2015). The discussion around

the cost functions is beyond the topic of this paper that essentially focuses

on the GED computation.

2.2. From GED Problem to Load Balancing Problem

GED is a discrete optimization problem that faces the combinatorial ex-

plosion curse. The complexity of GED was proven to be NP-hard where the

computational complexity of matching is exponential in the number of ver-

tices of the involved graphs (Zeng et al., 2009). At run time, the evolution

of the size and shape of the search space is irregular and unpredictable. The

search space is represented as an ordered tree.

For the sake of clarity in the rest of the paper, the term vertex refers

to an element of a graph while the term tree node or node represents an

element of the search tree.

The initial and leaf tree nodes correspond to the initial state and the

final acceptable state in the search tree, respectively. Each edge represents

a possible way of state change. A combinatorial optimization problem is

essentially the problem of finding a minimum-cost path from an initial node

to a leaf node in the search tree. More concretely in GED, each tree node

is a sequence of edit operations. Leaf nodes are complete edit operations

sequences (edit path) while intermediate nodes are partial solutions repre-

senting partial edit path. An example of search tree corresponding to GED

computation is shown in Figure 1.
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Figure 1: An incomplete search tree example for solving the GED problem. The first floor
represents possible matchings of vertex A with each vertex of the second graph (in blue).
A tree node is a partial solution which is to say a partial edit path.

The parallelism of combinatorial optimization problems is not trivial. In

a parallel combinatorial search application, each thread searches for optimal

solutions within a portion of the solution space. The shape and size of the

search space change as the search proceeds. Consequently, tree nodes are

generated and destroyed at run-time.

Portions that encompass the most promising solutions with high prob-

ability are expanded in priority and explored exhaustively, while portions

that have unfruitful solutions are discarded at run-time. To ensure that par-

allel threads are always busy, tree nodes have to be dispatched at run-time.

Hence, the local workload of a thread is difficult to predict.

The parallel execution of combinatorial optimization problems relies on

load balancing strategies to divide the global workload of all threads iter-

atively at run-time. From the viewpoint of a workload distribution strat-

egy, parallel optimizations fall in the asynchronous communication category

where no thread waits another thread to finish in order to start a new task
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(Bertsekas and Tsitsiklis, 1997). A thread initiates a balancing operation

when it becomes lightly loaded or overloaded. The objective of the data

distribution strategies is to ensure a fast convergence to the optimal solution

such that all the tree nodes are evaluated as fast as possible. In this paper,

we propose a parallel GED approach equipped with a load balancing strat-

egy. This approach ensures that all threads have the same amount of load

and all threads explore the most promising tree nodes first.

2.3. Load Balancing Problem

A parallel program is composed of multiple threads, each thread is a

processing unit which processes one task. Multiple threads can exist within

the same process and share resources such as memory (i.e., the values of its

variables at any given moment). In our GED case, the task is to evaluate a

tree node (a partial edit path) and to generate its children (the next possible

states). A thread performs a task on a set of works. A work is a tree node

characterized by its workload. A work cannot be shared between threads, it

is the smallest unit of concurrency the parallel program can exploit.

Creating a parallel program involves first decomposing the overall com-

putation into works and then assigning the works to threads. The decom-

position together with the assignment steps is often called partitioning. The

assignment on its own is referred to static load balancing.

Load balancing algorithms can be broadly categorized into two families:

Static and dynamic.
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2.3.1. Static load balancing

Static load balancing algorithms distribute works to threads once and for

all, in most cases relying on a priori knowledge about the works and the

system on which they run. These algorithms rely on the estimated execu-

tion times of works and inter-thread communication requirements. It is not

satisfactory for parallel programs that dynamic and/or unpredictable. The

problem of static load balancing is known to be NP-hard when the number

of threads is greater or equal to 2 (Drozdowski, 2009).

2.3.2. Dynamic load balancing

Dynamic load balancing algorithms bind works to threads at run-time.

Generally, a dynamic load balancing algorithm consists of three components:

A load measurement rule, an initiation rule and a load balancing operation.

A very detailed definition of load balancing models can be found in (Xu and

Lau, 1997).

Load Measurement. Dynamic load balancing algorithms rely on the workload

information of threads. The workload information is typically quantified by a

load index, a non-negative variable which is equal to zero if the thread is idle

or takes an increasing positive value when the load increases (Xu and Lau,

1997). Since the measure of workload would occur frequently, its calculation

must be efficient.

Initiation Rule. This rule dictates when to initiate a load balancing opera-

tion. The execution of a balancing operation incurs non-negligible overhead;
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its invocation must weight its overhead cost against its expected performance

benefit. An initiation policy is thus needed to determine whether a balancing

operation will be profitable.

Load Balancing Operation. This operation is defined by three rules: Loca-

tion, distribution and selection rules. The location rule determines the part-

ners of the balancing operation, i.e., the threads to involve in the balancing

operation. The distribution rule determines how to redistribute workload

among the selected threads. The selection rule selects the most suitable data

for transfer among threads.

3. Related Work

In this section, an overview of the GED methods presented in the lit-

erature is given. Since our goal is to speed up the calculations of GED,

parallelism is highly required. Therefore, we also cover the parallel methods,

dedicated to solving branch-and-bound (BnB) problems, aiming at getting

inspired by some of these works for parallelizing the GED calculations.

3.1. State-of-the-art of Graph Edit Distance

The methods of the literature can be divided into two categories depend-

ing on whether they can ensure the optimal matching to be found or not.

3.1.1. Exact Graph Edit Distance Approaches

A widely used method for edit distance computation is based on the A∗

algorithm (Riesen et al., 2007). This algorithm is considered as a foundation
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work for solving GED. A∗ is a best-first algorithm where the enumeration

of all possible solutions is achieved by means of an ordered tree that is con-

structed dynamically at run time by iteratively creating successor nodes.

At each time, the node or so called partial edit path p that has the least

g(p) + h(p) is chosen where g(p) represents the cost of the partial edit path

accumulated so far whereas h(p) denotes the estimated cost from p to a leaf

node representing a complete edit path. The sum g(p) + h(p) is referred to

as a lower bound lb(p). Given that the estimation of the future costs h(p) is

lower than, or equal to, the real costs, an optimal path from the root node to

a leaf node is guaranteed to be found (Riesen, 2009). Leaf nodes correspond

to feasible solutions and so complete edit paths. In the worst case, the space

complexity can be expressed as O(|Γ|) (Cormen et al., 2009) where |Γ| is the

cardinality of the set of all possible edit paths. Since |Γ| is exponential in

the number of vertices involved in the graphs, the memory usage is still an

issue.

To overcome the A∗ problem, a recent depth-first BnB GED algorithm,

referred to as DF, has been proposed in (Abu-Aisheh et al., 2015). This

algorithm speeds up the computations of GED thanks to its upper and lower

bounds pruning strategy and its preprocessing step. Moreover, this algorithm

does not exhaust memory as the number of pending edit paths that are stored

at any time t is relatively small thanks to the space complexity which is equal

to |V1|.|V2| in the worst case.

In both A∗ and DF, h(p) can be estimated by mapping the unprocessed
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vertices and edges of graph G1 to the unmapped to those of graph G2 such

that the resulting cost is minimal. The unprocessed edges of both graphs are

handled separately from the unprocessed vertices. This mapping is done in

a faster way than the exact computation and should return a good approxi-

mation of the true future cost. Note that the smaller the difference between

h(p) and the real future cost, the fewer nodes will be expanded by A∗ and

DF.

Almohamad and Duffuaa in (Almohamad and Duffuaa, 1993) proposed

the first linear programming formulation of the weighted graph matching

problem. It consists in determining the permutation matrix minimizing the

L1 norm of the difference between adjacency matrix of the input graph and

the permuted adjacency matrix of the target one. More recently, Justice and

Hero (Justice D, 2006) also proposed a binary linear programming formula-

tion of the graph edit distance problem. GM is treated as finding a subgraph

of a larger graph known as the edit grid. The edit grid only needs to have

as many vertices as the sum of the total number of vertices in the graphs

being compared. One drawback of this method is that it does not take into

account attributes on edges which limits the range of application.

Table 1 synthesizes the aforementioned methods in terms of the size of

the graphs they could match, the execution time and the complexity. One

can see the complexity of the exact GED in terms of the number of vertices

that the methods could match. Based on these facts, researchers shed light

on the approximate GED side.
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Reference Size of Graphs Execution Time Complexity Parallel?
(Riesen et al., 2007) 10 10 milliseconds Exponential No

(Abu-Aisheh et al., 2015) 15 100000 milliseconds Exponential No
(Justice D, 2006) 40 150000 milliseconds Exponential No

Table 1: Characteristics of exact graph edit distance methods

3.1.2. Approximate Graph Edit Distance Approaches

Variants of approximate GED algorithms are proposed to make GED

computation substantially faster. A modification of A∗, called Beam-Search

(BS ), has been proposed in (M. Neuhaus and Bunke., 2006). The purpose

of BS, is to prune the search tree while searching for an optimal edit path.

Instead of exploring all edit paths in the search tree, a parameter s is set to

an integer x which is in charge of keeping the x most promising partial edit

paths in the set of promising candidates.

In (Riesen, 2009), the problem of graph matching is reduced to finding

the minimum assignment cost where in the worst case, the maximum number

of operations needed by the algorithm is O(n3). This algorithm is referred to

as BP. Since BP considers local structures rather than global ones, the op-

timal GED is overestimated. Recently, researchers have observed that BP ’s

overestimation is very often due to a few incorrectly assigned vertices. That

is, only few vertex substitutions from the next step are responsible for ad-

ditional (unnecessary) edge operations in the step after and thus resulting

in the overestimation of the optimal edit distance. In (Riesen and Bunke,

2014), BP is used as an initial step. Then, pairwise swapping of vertices
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(local search) is done aiming at improving the accuracy of the distance ob-

tained so far. In (Riesen et al., 2014), a search procedure based on a genetic

algorithm is proposed to improve the accuracy of BP . These improvements

increase run times. However, they improve the accuracy of the BP solution.

In (Fischer et al., 2015), the authors propose a novel modification of the

Hausdorff distance that takes into account not only substitution, but also

deletion and insertion cost. H(V1, V2) is defined as follows: H(V1, V2) =∑
g1

ming2 c̄1(u, v) +
∑

g2
ming1 c̄2(u, v) which can be interpreted as the sum

of distances to the most similar vertex in the other graph. This approach

allows multiple vertex assignments, consequently, the time complexity is re-

duced to quadratic (i.e., O(n2)) with respect to the number of vertices of

the involved graphs. In (Riesen, 2015; Bougleux et al., 2016), the GED

was shown to be equivalent to a Quadratic Assignment Problem (QAP). In

(Bougleux et al., 2016), the QAP formulation of the GED problem is solved

by two well-known graph matching methods called Integer Projected Fixed

Point method (Leordeanu et al., 2009) and Graduated Non Convexity and

Concavity Procedure (Liu and Qiao, 2014). These two approximate methods

have been adapted and optimized to solve sub-optimally the GED problem.

In (Leordeanu et al., 2009), this heuristic improves an initial solution by try-

ing to solve a linear assignment problem and the relaxed QAP where binary

constraints are relaxed to the continuous domain. Iteratively, the quadratic

formulation is linearly approximated by its 1st-order expansion around the

current solution. The resulting assignment helps at guiding the minimization
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Reference Size of Graphs Execution Time Complexity Parallel?
(Riesen, 2009) 100 400 milliseconds Cubic No

(Riesen et al., 2007) 70 28 seconds |V1|x No
(Fischer et al., 2015) 100 500 milliseconds Quadratic No

(Bougleux et al., 2016) 70 27 seconds Cubic No

Table 2: Characteristics of approximate GED methods

of the relaxed QAP. In (Liu and Qiao, 2014), a path following algorithm aims

at approximating the solution of a QAP by considering a convex-concave re-

laxation through the modified quadratic function.

3.1.3. Synthesis

Table 2 summarizes the aforementioned approximate GED methods. Ap-

proximate GED methods often have a polynomial computational time in the

size of the input graphs and thus are much faster than the exact ones. Nev-

ertheless, these methods do not guarantee to find the optimal matching. On

the exact GED side, only few approaches have been proposed to postpone the

graph size restriction (Tsai et al., 1979; Justice D, 2006; Riesen et al., 2007;

Abu-Aisheh et al., 2015). For all these reasons, we believe that proposing a

fast and exact GED algorithm is of great interest.

3.2. State-of-the-art of parallel branch-and-bound algorithms

Parallel BnB algorithms have been wildly studied in the past. In this

section, we report approaches that have been proposed in the literature to

solve BnB in a fully parallel manner. The state-of-the-art in this section is

divided into two big families, depending on whether or not the exploration
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of the search tree is done in a regular way.

3.2.1. Regular Exploration of the Search Space

Chakroun et al in (Chakroun and Melab, 2013) put forward a template

that transforms the unpredictable and irregular workload associated to the

explored BnB tree into regular data-parallel GPU kernels 1. A pool of pend-

ing nodes is offloaded to the GPU where each node is evaluated in parallel.

Moreover, the branching and pruning steps are performed on the CPU side.

In fact, besides equivalent operations, the pruning operator on top of GPU

reduces the time of transferring the resulting pool from the GPU to the CPU

since the non promising generated sub-problems are kept in the GPU mem-

ory and deleted there. The authors of (Boukedjar et al., 2012) presented a

CPU-GPU model. When a kernel is launched, the works are assigned to idle

threads. Each thread performs computation on only one node of the BnB

list. Moreover, each thread has its own register and private local memory.

Threads can communicate by means of a global memory. Both (Chakroun

and Melab, 2013) and (Boukedjar et al., 2012) solved the irregularity of BnB.

However, the explorations in both approaches take longer time. That is be-

cause in the first kernel each thread generates only one child at each time

while the elimination of branches occurs in the second kernel.

An OPEN-MP approaches have been put forward in (Dorta et al., 2003).

T threads are established by the master program. Moreover, the master

1Kernels are functions executed by many GPU threads in parallel.
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program generates tree nodes and put them in a queue. Then T tree nodes

are removed from the queue and assigned to each thread. The best solution

must be modified carefully where only one thread can change it at any time.

The same thing is done when a thread tries to insert a new tree nodes in

the global shared queue. In this approach, each thread only takes one node,

explores it and at the end of its exploration it sends its result to the master

that forwards the message to other slaves if the upper bound is updated.

Thus, this model did not tackle the irregularity of BnB.

3.2.2. Irregular Exploration of the Search Space

A master-slave parallel formulation of depth-first search was proposed

in(Rao and Kumar, 1987). Each thread takes a disjoint part of the search

space. Once a thread finishes its assigned part, it steals unexplored nodes

of the search space of another thread. A dynamic depth eager scheduling

method was proposed in (Neary and Cappello, 2005). In the beginning, a

depth parameter is set to 2, which means that all the tasks whose level in

the search space is 2 are processed by threads with no further subdivision.

Then, each thread works on its associated problems. When a thread runs out

of work, it requests work from some thread that it knows. This balances the

computational load as long as the number of tasks per thread is high. The

communication in (Rao and Kumar, 1987) and (Neary and Cappello, 2005)

is asynchronous, and thus threads communicate if they succeed in updating

the upper bound. An eager scheduling approach is used to make the tasks
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balanced depending on the difficulty of each tree node.

A master-slave hybrid Depth-First/Best-First was proposed in (Chung

et al., 2012). The master thread keeps generating the tree nodes at a pre-

determined level (i.e., level i) and saves them to a work pool. Then, each

of the worker threads takes a node with the minimum lower bound from the

pool and explores it in a depth-first way. Generating and exploring nodes

are repeated until finding the solution of the problem. This model has a less

communication between threads, however, it is irregular as the works given

to threads do not have the same difficulty.

In (Allen and Yasuda, 1997), a BnB algorithm for solving inexact graph

matching was proposed. This algorithm aims at determining a minimum-

distance between two unattributed graphs. At each iteration, each thread

takes a node from its queue to be solved by expanding it in a depth-first search

way until its branch is fully explored, updating the local best permutation

and the corresponding degree of mismatch and eliminating test. Afterwards,

a global permutation with its corresponding degree of mismatch is updated

and given to all threads when all of them finish solving their chosen nodes

or problems, then, a next node is chosen by each thread. A thread becomes

inactive when it has no node left in its queue. Load balancing is performed

if the number of inactive threads with empty queues is above a threshold T .

The best permutation and the best degree of match are only updated at the

end of each iteration, such a fact will not prune the search space as fast as

possible.
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3.2.3. Synthesis

Based on the aforementioned parallel BnB algorithms and to the best of

our knowledge, none of these algorithms addressed the GED problem. We

believe that proposing a parallel branch-and-bound algorithm dedicated to

solving the GED problem is of great interest since the computational time

will be improved. The search tree of GED is irregular (i.e., the number of

tree nodes varies depending on the ability of the lower and upper bounds

in pruning the search tree) and thus the regular parallel approaches (e.g.,

(Chakroun and Melab, 2013; Boukedjar et al., 2012; Dorta et al., 2003)) are

not suitable for such a problem.

The approaches in (Rao and Kumar, 1987), (Chung et al., 2012) and

(Neary and Cappello, 2005) are interesting since the communication is asyn-

chronous 2 and thus there is no need to stop a thread if it did not finish

its tasks, unless another thread ran out of tasks. In (Chung et al., 2012),

however, load balancing is not integrated. Thus, when there are no more

problems to be generated by the master thread, some threads might become

idle for a certain amount of time while waiting the other threads to finish

their associated tasks. For GED, load balancing is important to keep the

amount of work balanced between all threads.

On this basis, we propose a parallel GED method equipped with a load

balancing strategy. This paper is considered as an extension of the most

2Asynchronous communication indicates that no thread waits another thread to finish
in order to start its new task (Bertsekas and Tsitsiklis, 1997).
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recent BnB algorithm (DF ). When thinking of a parallel and/or a distributed

approach of DF, the edit paths can be considered as atomic tasks to be solved.

Edit paths can be dispatched and can be given to threads in order to divide

the GED problem into smaller problems. It is hard to estimate the time

needed by threads to explore a sub-tree (i.e., to become idle). Likewise, the

number of CPUs and/or machines have to be adapted to the amount and

type of data that have to be analyzed. Some experiments in Section 5.5

illustrate this point and are followed by a discussion.

4. Proposal: Parallel graph edit distance using a load balancing

strategy

In this section, an overview of our proposal is given. The main objectives

of the approach lie in, first, making sure that all the threads have a work

to do. Second, balancing the workload of the threads at run-time. Third,

exploring the fruitful partial edit paths of the search tree thanks to the cost

estimation of lb(p).

Generally speaking, our proposal is inspired by some ideas in (Rao and

Kumar, 1987; Neary and Cappello, 2005). A best-first procedure is performed

before starting to decompose the search tree (composed of edit paths) into

sub-trees. The load balancing procedure occurs when any thread finishes all

its assigned edit paths. The algorithm terminates when all threads finish the

exploration of their assigned editpaths. Our algorithm, denoted by PDFS,

consists of three main steps: Initialization-Decomposition-Assignment, Branch-
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and-Bound and Load Balancing. Figure 2 pictures the whole steps of PDFS.

Figure 2: The main Steps of PDFS

4.1. Initialization, Decomposition and Assignment

The objective of this step is twofold. First: dividing the problem into

sub-problems. Second, making sure, at the beginning of the method, that all

threads have an equivalent workload in terms of number of edit paths and

their difficulty.

Initialization Procedure. As in DF (Abu-Aisheh et al., 2015), this phase con-

sists of 3 steps, each of which aims at speeding up the calculations.

First, the vertices and edges cost matrices (Cv and Ce) are constructed,

respectively. This step aims at getting rid of re-calculating the distances

between attributes when matching vertices and edges of G1 and G2.

Let G1 = (V1, E1, µ1, ξ1) and G2 = (V2, E2, µ2, ξ2) be two graphs with

V1 = (u1, ..., un) and V2 = (v1, ..., vm). A vertices cost matrix Cv, whose

dimension is (n+ 2) X (m+ 2), is constructed as follows:
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Cv =

c1,1 ... c1,κ c1←ε ... ∞

... ... ... ... ... ...

... ... ... ... ... ...

cn,1 ... cn,κ ∞ ... cn→ε

cε→1 ... ∞ ∞ ... ∞

∞ ... cε←κ ∞ ... ∞

where n is the number of vertices of G1 and κ is the number of vertices of

G2 .

Each element ci,j in the matrix Cv corresponds to the cost of assigning

the ith vertex of the graph G1 to the jth vertex of the graph G2. The left

upper corner of the matrix contains all possible node substitutions while the

right upper corner represents the cost of all possible vertices insertions and

deletions of vertices of G1, respectively. The left bottom corner contains

all possible vertices insertions and deletions of vertices of G2, respectively

whereas the bottom right corner elements cost is set to infinity which concerns

the substitution of ε− ε. Similarly, Ce contains all the possible substitutions,

deletions and insertions of edges of G1 and G2. Ce is constructed in the very

same way as Cv. The aforementioned matrices Cv and Ce are used as an

input of the following phase.

Second, the vertices of G1 are sorted in order to start with the most

promising vertices in G1. BP is applied to establish the initial edit path EP

(Riesen, 2009). Afterwards, the edit operations of EP are sorted in ascending
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order of the matching cost where EPsorted = {u→ v} ∀u ∈ V1∪{ε}. At last,

from EPsorted, each u ∈ V1 is inserted in sorted -V1. This operation helps in

finding the most promising vertices vi ∈ V1 that will be matched first with

the unmatched vertices in V2 to speed up the exploration of the search tree

while searching for the optimal solution.

Third, a first upper bound (UB) is computed by BP algorithm as it is

relatively fast and it provides reasonable results, see (Riesen, 2009) for more

details.

Decomposition. Before starting the parallelism, a distribution approach is

applied aiming at dispatching the workload or sub-problems among threads.

For that purpose, N edit paths are first generated using A∗ by the main

thread and saved in the heap. Afterwards, the N partial edit paths are

sorted as an ordered tree starting from the node whose lb(p) is minimum up

to the most expensive one. Note that N is a parameter of PDFS.

Assignment. LetQ be the set of partial solutions outputted by A∗. Assigning

partial solutions to parallel threads is equivalent to solving the static load

balancing problem stated in Section 2.3.1. Due to the complexity of the

problem, we chose to avoid an exact computation of load balancing and we

adopted an approximated one. Algorithm 1 depicts the strategy we have

followed. Once the partial edit paths are sorted in the centralized heap (line

1), the local list OPEN of each thread is initialized as an empty set (lines

2 to 4). Each thread receives one partial solution at a time, starting from
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the most promising partial edit paths (line 8). The threads keep taking edit

paths in that way until there is no more edit path in the centralized heap

(lines 6 to 10).

Algorithm 1 Dispatch-Tasks

Input: A set of partial edit paths Q generated by A∗ and T threads.
Output: The local list OPEN of each thread Ti

1: Q ← sortAscending(Q)
2: for Tindex ∈ T do
3: OPENTindex

← {φ}
4: end for
5: i=0 . a variable used for thread’s indices
6: for p ∈ Q do
7: index = i % |T |
8: OPENTindex

.addTask(p)
9: i++

10: end for
11: Return OPENTindex

∀ index ∈ 1, · · · , |T |

Each thread maintains a local heap to keep the assigned edit paths for

exploring edit paths locally. Such an iterative way guarantees the diversity

of nodes difficulty that are associated to each thread.

4.2. Branch-and-Bound Method

In this section we explain the components of BnB that each thread ex-

ecutes on its assigned partial edit paths. First, the rules of selecting edit

paths, branching and bounding are described. Second, updating the upper

bound and pruning the search tree are detailed.

Selection Rule. A systematic evaluation of all possible solutions is performed

without explicitly evaluating all of them. The solution space is organized
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as an ordered tree which is explored in a depth-first way. In depth-first

search, each edit path is visited just before its children. In other words,

when traversing the search tree, one should travel as deep as possible from

node i to node j before backtracking. At each step, the most promising child

is chosen.

Branching Procedure. Initially each thread only has its assigned editpaths in

its local heap set (OPEN ) i.e., the set of the edit paths, found so far. The

exploration starts with the first most promising vertex u1 in sorted -V1 in

order to generate the children of the selected editpath. The children consist

of substituting u1 with all the vertices of G2, in addition to the deletion of

u1 (i.e., u1 ⇒ ε). Then, the children are added to OPEN. Consequently, a

minimum edit path (pmin) is chosen to be explored by selecting the minimum

cost node (i.e., min(g(p) + h(p))) among the children of pmin and so on.

Starting from the second promising vertex u2 in sorted -V1, the edges of

both G1 and G2 are handled. Edges of G1 can be either matched with edges

of G2 or deleted while edges of G2 can be either inserted in G1 or matched

with edges in G1. However, the decision of whether an edge is inserted, sub-

stituted, or deleted is done regarding the matching of their adjacent vertices.

That is, the neighborhood of edges dominates their matchings. Edges are

handled as follows: Let ui and uj ∈ V1 be matched with vk and vz ∈ V2,

respectively (i.e., ui → vk and uj → vz). Based on these matchings. One of

the following edge operations is selected:

26



ui 

uj 

vk 

vz 

ui 

uj 

vk 

vz 

ui 

uj 

vk 

vz 

𝜖 𝜖 eij 
 

eij 
 

ekz 

 

Edges Substitution Edges Deletion Edges Insertion 

G1 

 
G2 

 
G1 

 
G2 

 
G1 

 
G2 

 

Figure 3: Edge mappings based on their adjacent vertices and whether or not an edge
between two vertices can be found

• If ∃eij ∈ E1 and ∃ekz ∈ E2 then eij → ekz

• If ∃eij ∈ E1 and @ekz ∈ E2 then eij → ε

• If @eij ∈ E1 and ∃ekz ∈ E2 then ε→ ekz

The search for a better edit path continues through backtracking if pmin

equals φ. In this case, the next child of pmin is tried out and so on.

Pruning Procedure. As in DF, pruning, or bounding, is achieved thanks to

h(p), g(p) and an upper bound UB obtained at node leaves. Formally, for

a node p in the search tree, the sum g(p) + h(p) is taken into account and

compared with UB. That is, if g(p) + h(p) is less than UB then p can be

explored. Otherwise, the encountered p will be pruned from OPEN and a

backtracking is done looking for the next promising node and so on until

finding the best UB that represents the optimal solution of PDFS. Note that

OPEN is a local search tree of each thread. This algorithm differs from A∗

as at any time t, in the worst case, OPEN contains exactly |V1|.|V2| elements

and hence the memory consumption is not exhausted.
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Upper Bound Update. The best upper bound is globally shared by all threads

(shared UB). When a thread finds a better upper bound, the shared UB is

updated (i.e., a complete path found by a thread whose cost is less than the

current UB).

Heuristic. After comparing several heuristics h(p) from the literature, we

selected the bipartite graph matching heuristic proposed in (Riesen, 2009).

The complexity of such a method is O({|V1|, |V2|}3 + |E1|, |E2|}3). For each

tree node p, the unmatched vertices and edges are handled in a complete

independent way. Unmatched vertices of G1 and unmatched vertices of G2

are matched at best by solving a linear sum assignment problem. Unmatched

edges of both graphs are handled analogously. Obviously, this procedure

allows multiple substitutions involving the same vertex or edge and, therefore,

it possibly represents an invalid way to edit the remaining part of G1 into

the remaining part of G2. However, the estimated cost certainly constitutes

a lower bound of the exact cost.

4.3. Load Balancing and Communication

Load Measurement. Each thread i provides some information about its work-

load or weight index ωi. Obviously, the number of edit paths in OPEN can

be a workload index. However, this choice may not be accurate since BnB

computations are irregular with different computational requirements. Sev-

eral workload indices can be adapted. One could think about h(p). h(p)

can be hard to interpret, it can be small either because the p is close to
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the leaf node or because p is a very promising solution. To eliminate this

ambiguity, instead, one can count the number of vertices in G1 that have not

been matched yet. This is done on each edit path in the local heap. In our

approach, we have selected the latter.

Initiation Rule. An initiation rule dictates when to initiate a load balancing

operation. Its invocation decision must appear when a thread workload index

ωi reaches a zero value that is to say if the thread is idle.

Load Balancing Operation. In parallel BnB computations, each process solves

one or more subproblems depending on the decomposite procedure. In our

problem, two threads are involved in the load balancing operation: Heavy

and idle threads. When a thread becomes idle, the heaviest thread will be in

charge of giving to the idle thread some edit paths to explore. All the edit

paths of the heavy thread are ordered using their lb(p). The heavy thread

distributes the best edit paths between it and the idle thread. This proce-

dure guarantees the exploration of the best edit paths first since each thread

holds some promising edit paths.

Threads Communication. All threads share Ce, Ce, sorted -V1 and UB. Since

all threads try to find a better UB, a memory coherence protocol is required

on the shared memory location of UB. When two threads simultaneously try

to update UB, a synchronization process based on mutex is applied in order

to make sure that only one thread can access the resource at a given point

in time.
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5. Experiments

This section aims at evaluating the proposed contribution through an

experimental study that compares 9 methods in terms of precision, execu-

tion time and classification rate on reference datasets. We first describe the

datasets, the methods that have been studied and the protocol. Then, the

results are presented and discussed.

5.1. Datasets

To the best of our knowledge, few publicly available graphs databases are

dedicated to precise evaluation of graph matching tasks. However, most of

these datasets consist of synthetic graphs that are not representative of PR

problems concerning graph matching under noise and distortion. We shed

light on the IAM graph repository which is a widely used repository dedi-

cated to a wide spectrum of tasks in pattern recognition and machine learning

(Riesen, 2008). Moreover, it contains graphs of both symbolic and numeric

attributes which is not often the case of other datasets. Consequently, the

GED algorithms involved in the experiments are applied to three different

real world graph datasets taken from the IAM repository (Riesen, 2008) (i.e.,

GREC, Mutagenicity (MUTA) and Protein datasets). Continuous attributes

on vertices and edges of GREC play an important role in the matching pro-

cess whereas MUTA is representative of GM problems where graphs have

only symbolic attributes. On the other hand, the Protein database contains

numeric attributes on each vertex as well as a string sequence that is used to
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represent the amino acid sequence. For the scalability experiment, the sub-

sets of GREC, MUTA and Protein, proposed in the repository GDR4GED

(Abu-Aisheh et al., 2015), were chosen. On the other hand, for the classi-

fication experiment, the experiments were conducted on the train and test

sets of each of them.

In addition to these datasets, a chemical dataset, called PAH, taken from

GREYCs Chemistry dataset repository 3, was also integrated in the exper-

iments. This dataset is quite challenging since it has no attributes on both

vertices and edges. Table 3 summarizes the characteristics of all the selected

datasets.

These datasets have been chosen by carefully reviewing all the publicly

available datasets that have been used in the reference works mentioned in

section 3 (LETTER, GREC, COIL, Alkane, FINGERPRINT, PAH, MUTA,

PROTEIN and AIDS to name the most frequent ones). On the basis of

this review, a subset of these datasets has been chosen in order to get a

good representativeness of the different graph features which can affect GED

computation (size and labelling):

Each dataset has specific edit cost functions. Two non-negative meta

parameters are associated to GM: (τvertex and τedge) where τvertex denotes a

vertex deletion or insertion costs whereas τedge denotes an edge deletion or

insertion costs. A third meta parameter α is integrated to control whether

3https://brunl01.users.greyc.fr/CHEMISTRY/index.html
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Dataset GREC Mutagenicity Protein PAH
Size 4337 1100 660 484

Vertex labels x,y coordinates Chemical symbol Type and amino acid sequence None
Edge labels Line type Valence Type and length None

vertices 11.5 30.3 32.6 20.7

edges 12.2 30.8 62.1 24.4
Max vertices 25 417 126 28
Max edges 30 112 146 34

Table 3: The Characteristics of the GREC, Mutagenicity, Protein and PAH Datasets.

the edit operation cost on the vertices or on the edges is more important.

Table 4 demonstrates the cost functions of each of the included datasets as

well as their meta parameters.

Dataset GREC Mutagenicity Protein PAH
τvertex 90 11 11 3
τedge 15 1.1 1 3
α 0.5 0.25 0.75 0.5

Vertex substitution function Extended euclidean distance Dirac function Extended string edit distance 0
Edge substitution function Dirac function Dirac function Dirac function 0
Reference of cost functions (Riesen, 2009) (Riesen, 2009) (Riesen, 2009) (Gauzere et al., 2012)

Table 4: The cost functions and meta parameters of the datasets.

5.2. Studied Methods

We compared PDFS to five other GED algorithms from the literature.

From the related work, we chose two exact methods and three approximate

methods. On the exact method side, A∗ algorithm applied to GED problem

(Riesen et al., 2007) is a foundation work. It is the most well-known exact

method and it is often used to evaluate the accuracy of approximate methods.

DF is also a depth-first GED that has been recently published and that

beats A∗ in terms of running time and precision (Abu-Aisheh et al., 2015).
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Moreover, a naive parallel PDFS, referred to as naive-PDFS, is implemented

and added to the list of exact methods. The basis of naive-PDFS is similar to

PDFS. However, naive-PDFS does not include neither the assignment phase

(see Section 4.1) nor the load balancing phase (see Section 4.3). Instead of

the assignment phase, a random assignment is applied. naive-PDFS does

not include a balancing strategy which means that if a thread Ti finished its

assigned nodes, it would be idle during the rest of the execution of naive-

PDFS. On the approximate method side, we can distinguish three families

of methods, tree-based methods, assignment-based methods and set-based

methods. For the tree-based methods, the truncated version of A∗ (i.e., BS -

x) was chosen where x refers to maximum number of open edit paths. Among

the assignment-based methods, we selected BP . In (Riesen, 2009), authors

demonstrated that BP is a good compromise between speed and accuracy.

Finally, we picked a set-based method. An approach based on the Hausdorff

matching, denoted by H, was proposed in (Fischer et al., 2015). All these

methods cover a good range of GED solvers and return a vertex to vertex

matching, except H, as well as a distance between two graphs G1 and G2

except the lower bound GED which only returns a distance between two

graphs.

5.3. Environment

PDFS and naive-PDFS were implemented using Java threads. The eval-

uation of both algorithms was conducted on a 24-core Intel i5 processor
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2.10GHz, 16GB memory. In PDFS, the partial edit paths are sorted in the

centralized heap OPEN, as mentioned in Section 4.1. Each thread takes one

edit path from OPEN and the edit path is then deleted from OPEN. The

CPU only needs to move to the next memory location so the spatial local-

ity is exploited at best to reduce cache misses. For sequential algorithms,

evaluations were conducted on one core.

5.4. Protocol

In this section, the experimental protocol is presented and the objectives

of the experiment are described.

Let S be a graph dataset consisting of k graphs, S = {g1, g2, ..., gk}. Let

M = Me ∪ Ma be the set of all the GED methods listed in Section 5.2,

with Me = {A∗, DF, PDFS} the set of exact methods and Ma = {BP,BS-

1 ,BS-10 ,BS-100 , H} the set of approximate methods (where x in BS was

set to 1, 10 and 100). Given a method m ∈M, we computed all the pairwise

comparisons d(gi, gj)
m, where d(gi, gj)

m is the value returned by method m

on the graph pair (gi, gj) within certain time and memory limits.

Two types of experiments were carried out scalability experiment and

classication experiment.

5.4.1. Scalability Experiment under Time Constraints

In the scalability experiment, several metrics were included: The number

of best found solutions and the number of optimal solutions. Moreover, a pro-

jection of p on a two-dimensional space (R2) is achieved by using speed-score
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and deviation-score features where speed and deviation are two concurrent

criteria to be minimized. First, for each database, the mean deviation and

the mean time is derived as follows:

devpk =
1

m×m

m∑
i=1

m∑
j=1

dev(gi, gj)
p ∀p ∈ P ∀k ∈ #subsets (1)

timepk =
1

m×m

m∑
i=1

m∑
j=1

time(Gi, Gj)
p and (i, j) ∈ J1,mK2 ∀k ∈ #subsets

(2)

where dev(Gi, Gj) is the deviation of each d(Gi, Gj) and time(Gi, Gj)

is the run time of each d(Gi, Gj). To obtain comparable results between

databases, mean deviations and times are normalized between 0 and 1 as

follows:

deviation scorem =
1

#subsets

∑
S∈subsets

devmS
max devS

(3)

time scorem =
1

#subsets

∑
S∈subsets

timemS
max timeS

(4)

where max devS and max timeS denote respectively the maximal mean

deviation and the maximal mean execution time obtained among all the

methods M on dataset S.

All these metrics have been proposed in (Abu-Aisheh et al., 2015). This
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experiment was decomposed of 2 tests:

Accuracy Test. The aim was to illustrate the error committed by approxi-

mated methods over exact methods. In an ideal case, no time constraint (CT )

should be imposed to reach the optimal solution. Due to the large number

of considered matchings and the exponential complexity of the tested algo-

rithms, we allowed a maximum CT of 300 seconds. This time constraint

was large enough to let the methods search deeply into the solution space

and to ensure that many nodes will be explored. The key idea was to reach

the optimality, whenever it is possible, or at least to get to the Graal (i.e.,

the optimal solution) as close as possible. This use case is necessary when it

is important to accurately compare images represented by graphs even if the

execution time is long.

Speed Test. The goal was to evaluate the accuracy of exact methods against

approximate methods when time matters. That is to say in a context of very

limited time. Thus, for each dataset, we select the slowest graph comparison

using an approximate method among BP and H as a first time constraint.

Unlike BP and H, BS is not included as it is a tree-search algorithm which

could output a solution even under a limited CT . Mathematically saying, CT

is defined as follows:

CT = max
m,i,j
{timem(gi, gj)} (5)
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Where m ∈ Ms /BS, (i, j) ∈ J1, kK2 and time is a function returning the

running time of method m for a given graph comparison. This way ensures

that BP and H could solve any instance. When the time limit is over, the

best solution found so far is outputted by BS as well as the exact GED

methods. So time and memory limits play a crucial role in our experiments

since they impact such methods. In Table 5, we display the time limits used

for each dataset.

Dataset GREC MUTA Protein PAH
CT (milliseconds) 400 500 400 55

Table 5: Time constraints for accuracy evaluation in limited time

This case study is representative of a classification stage where many

distances have to be quickly computed.

5.4.2. Classification experiment

This part of the experiments aimed at showing the performance of the

included methods in classifying the graphs of the test set of each of GREC,

MUTA and Protein. PAH is not included since we do not have the classes of

the test graphs.

Two metrics are proposed: Average time (i.e., the time needed to classify

each test graph) and classification rate using 1 nearest neighbor (1-NN). The

values of CT were the same ones used in the speed test of the aforementioned

experiment (speed test).

In all the experiments (i.e., scalability and classification), CM was set

to 1GB. Among all the aforementioned methods, we expected A∗ to violate
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CM specially when graphs get larger. In a small CT context, the number of

threads in PDFS was set to 3. The reason is that since CT was quite small,

we did not want to lose time decomposing the workload among a big number

of threads. Moreover, because of the complexity of the calculation of lb, it

was removed from each of BS, A∗, DF and PDFS

5.5. Parameters

We study the effect of increasing the number of threads T on both accu-

racy and speed of naive-PDFS and PDFS. This test was carried out using

a 24-core CPU. T is varied from 2 to 128 threads. Moreover, the effect of

several values of N , described in Section 4.1, were studied. Five values of

N were chosen: -1, 100, 250, 500 and 1000, where N=-1 represents the de-

composition of the first floor in the search tree with all possible branches,

N= 100 and 250 moderately perform load balancing while N=500 and 1000

is the exhaustive case where threads have much less time dedicated to load

balancing since each thread will be assigned sufficient number of works before

the parallelism starts. We expected PDFS to perform better when increasing

N up to a threshold where the accuracy of the algorithm is degraded.

5.6. Results

In this section, the results are demonstrated along with their discussions.

We conducted experiments on the involved datasets, however, for the part

of parameters selection, we only show the results on GREC-20 (Abu-Aisheh
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et al., 2015) since this dataset is representative of the other datasets. Time

unit is always expressed in milliseconds.

5.6.1. Number of Threads

Table 6 displays the effect of the number of threads |T | on the perfor-

mance of PDFS. In Table 6, CPU time is the time spent at working by all

the threads. One may notice that increasing |T | resulted in increasing the

chance to find a better solution, more optimal solutions and a smaller de-

viation as we explored more nodes in a parallel manner. Thus, the overall

running time decreased (see Figure 4). Since the machine on which we ran

this test has a 24-core processor, there was a saturation when increasing |T |.

For example, on 128 threads the deviation became bigger (see Figure 4). On

a 24-core machine, 32 and 64 threads had got the best results. In addition,

increasing the number of threads also increased the load balancing.

Method #best found solutions #optimal solutions Idle Time over CPU Time

PDFS-2T 67 48 1.7 ∗10−5

PDFS-4T 79 54 9.5 ∗10−5

PDFS-8T 83 66 2.8 ∗10−4

PDFS-16T 92 69 7.7 ∗10−4

PDFS-32T 94 69 0.011

PDFS-64T 95 68 0.043

PDFS-128T 98 66 0.169

Table 6: The effect of the number of threads on the performance of PDFS.

Based on the aforementioned results, |T | is set to 64. For naive-PDFS,

the same experiment was conducted. At the end, |T | was set to 128.
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Figure 4: Time-deviation score: Left (#Threads), right (# Edit Paths).

5.6.2. Number of Edit Paths

Table 7 demonstrates the effect of the number of initial edit paths N on

the performance of PDFS. One can remark that N equals 100 was the best

choice in terms of the number of best found solutions, number of optimal

solutions and deviation. Even though N equals 100 remarkably spent much

more time on load balancing, it was still 2.3 times more precise than N equals

1000. The latter represented the least precise results (see Figure 4) which

was due to the time spent in dispatching the work among threads before the

BnB step started. In the rest of the experiments, the number of initial edit

paths is set to 100.

For naive-PDFS, N equals 100 also demonstrated the best results.

5.6.3. Comparing PDFS with naive-PDFS

In this section we compare both PDFS and naive-PDFS. For comparison

needs, both algorithms were executed on 128 threads which is slightly in

40



Method #best found solutions #optimal solutions Idle Time over CPU Time

PDFS-1st Floor 82 53 0.067

PDFS-100 EP 85 66 0.067

PDFS-250 EP 85 41 0.053

PDFS-500 EP 82 41 0.023

PDFS-1000 EP 83 40 0.018

Table 7: The effect of the number of edit paths on the performance of PDFS

favor of naive-PDFS.

The results in Table 8 show that PDFS beat naive-PDFS with 28 more

optimal solutions. PDFS is equipped with a load balancing scheme which

allows the workload variance to be minimized. The workload variance is

defined as the deviation between the threads’s workloads and the average

workload of all threads at time t. Reducing the variance is important to make

sure that all threads have approximately the same amount of work. One can

also observe that PDFS was fully parallel where the CPU time was doubled

compared to naive-PDFS. In fact, in naive-PDFS, some threads became idle

since they finished they assigned works while other threads continued to

explore their assigned edit paths.

Method #optimal solutions Mean CPU Time (ms) Mean Variance (ms)

naive-PDFS 63 4792444 361157.6

PDFS 91 7275476 49880.62

Table 8: The effect of the number of edit paths on the performance of PDFS when executed
on the GREC dataset

5.6.4. Comparing Methods under Constraints

In this section, we compare the state-of-the-art methods as well as PDFS

under small and large time constraints.
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Large Time Constraint. Regarding the number of best found solutions and

the number of optimal solutions, PDFS always outperformed DF on GREC,

MUTA, Protein and PAH, see Figures 5, 6 and 7.

On MUTA, the deviation of BP was 20%; this fact confirms that the more

complex the graphs the less accurate the answer achieved by BP, see Figure

7(b). BP considers only local, rather than global, edge structure during

the optimization process (Riesen, 2009) and so when graphs get larger, its

solution becomes far from the exact one. Despite the out-performance of

PDFS over BP, H and DF, it did not outperform BS in terms of number of

best found solutions, see Figure 5(b). The major differences between these

algorithms are the search space and the Vertices-Sorting strategies which are

adapted in PDFS and not in BS. Since BP did not give a good estimation

on MUTA, it was irrelevant when sorting vertices of G1 resulting in the

exploration of misleading nodes in the search tree. Since the graphs of MUTA

are relatively large, backtracking nodes took time. However, the difference

between BS and PDFS in terms of deviation was only 0.1%.

On Protein-30, BS-100 was superior to PDFS in terms of number of best

found solutions with 50 better solutions. However, this is not the case of a

bigger dataset like Protein-40 where BS-100 outputted unfeasible solutions

because of the tremendous size of the search tree and thus PDFS outper-

formed it. On average, on all databases and among all methods, PDFS got

the best deviation, see Figure 7.

Exploring the search tree in a parallel way has an advantage when we are
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also interested in having more optimal solutions, see Figure 6. Results, in

Figure 6, demonstrated that the number of optimal solutions found by PDFS

was always equal or greater than the number of optimal solutions found by

DF and A∗, except on MUTA-20 where A∗ outperformed it. For instance,

on GREC, PDFS found 9.6% more optimal solutions when compared to DF

and 10% more optimal solutions on PAH. Note that without time constraints

all the exact GED algorithms must find all the optimal solutions except A∗

that has memory bottleneck.

Small Time Constraint. Concerning the number of best found solutions, even

under a small CT , PDFS outperformed DF where the average difference

between DF and PDFS was: 10% on GREC, 16% on MUTA, 15% on Protein

and 11% on PAH, see Figure 8.

A∗ got the highest deviation rates (around 30% on GREC, 73% on MUTA,

86% on Protein and 51.94% on PAH) since it did not have time to output

feasible solutions. Despite the fact that PDFS was among the slowest al-

gorithms, it obtained the lowest deviation (0% on both GREC and Protein,

5% on MUTA and 6% on PAH), see Figure 9. BS-100 outputted unfeasible

solutions on MUTA-50, MUTA-60, MUTA-70, MUTA-MIX and Protein due

to the small CT .

5.6.5. Classification Tests

Table 9 shows the methods included in the classification experiments.

Different versions of DF and A∗ were tested on each dataset taking into ac-
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Figure 5: Number of best found solution under big time constraint
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Figure 6: Number of optimal solutions under big time constraint
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Figure 7: Time-deviation score under large time constraint
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Figure 8: Number of best found solution under small time Constraint
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Figure 9: Time-deviation score under small time constraint.
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count different combinations of lb and UB. Afterwards, the best combination

is selected to be compared with the other methods.

Acronym Details

DF -UB-LB DF without upper bound
and with h(p)=0.

DF -UB-LB DF without UB and
with h(p)=lb2.

DF -UB-LB DF with an initial UB
equals to BP, h(p)=0.

DF-UB-LB DF with an initial UB
equals to BP and lb2

PDFS Parallel GED with the
best parameters of DF

A∗-LB the A∗ algorithm with
lb2

A∗ the A∗ algorithm without
lb2

BS-1, BS-10 and BS-100 Beam Search with OPEN
size = 1, 10 and 100, re-
spectively

BP The bipartite GM
H The hausdorff algorithm.

Table 9: Methods included in the classification experiments

Table 10 shows the classification results on GREC and Protein. On

GREC, DF with all its variants obtained the same classification rate as BP

(i.e., 0.985) even the one without upper and lower bounds (i.e., DF -UB-LB).

That shows that DF can also be used to classify graphs even without being

obliged to wait for the final, or optimal, solution. DF-UB-LB was the fastest

compared to all the variants. This fact shows the importance of UB and LB

to make the algorithm faster. Accordingly, and since PDFS is an extension

of DF, not all the variants of PDFS are tested. That is, only PDFS-UB-LB

has been included in the tests. PDFS-UB-LB was 29% faster than DF-UB-
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LB. Despite the fact that H was the worst algorithm when evaluating its

distances, it was among the algorithms whose classification rate were high.

One can see that, on GREC, H beat both BS-10 and BS-100. A∗-LB ob-

tained better classification rate than A∗. A∗’ lower bound is time consuming

and consequently the number of unfeasible solutions was high.

On Protein, one can see a different behavior (see Table 10). DF-UB -LB

was the fastest while DF-UB-LB was the slowest. That is because of the time

consumed to calculate distances using the cost functions of Protein. Thus,

as on GREC, PDFS-UB-LB was included in the tests. Despite the slowness

of DF-UB-LB, it was also the best algorithm in terms of classification rate.

PDFS-UB-LB was 36% faster than DF-UB-LB. Even though BS took rela-

tively enough time to classify graphs (compared to DF ), it was way far from

the results obtained by DF. A∗ was not able to find feasible solutions of each

pair of graphs. That was not the case of all the variants of DF as they were

always able to output feasible solutions before halting.

Computing lb(p) and a first upper bound UB was time consuming on such

a large database. Since CT of MUTA was set to 500ms, we kept only DF -

UB-LB and A∗-LB. Results showed that DF -UB-LB was twice as slow as

BP, however, both of them succeeded in finding the best classification rate

(i.e., approximately 0.70). PDFS -UB-LB was also able to find the same

classification rate and was 40% faster than DF -UB-LB.

From all the aforementioned results, one can conclude that even if the

deviation of DF and PDFS was better when compared to BP, it did not have
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GREC Protein
R Time (ms) R Time (ms)

DF -UB-LB 0.98 171401.54 0.44 128469.57

DF -UB-LB 0.98 163979.45 0.52 124361.61

DF -UB-LB 0.98 140675.00 0.40 147371.86
DF -UB-LB 0.98 140525.48 0.52 145779.68
PDFS-UB-LB 0.98 99850.79 0.52 80038.33

A∗-LB 0.89 358158.76 0.29 1065106.80
A∗ 0.53 222045.94 0.26 194021.88
BS1 0.98 69236.34 0.24 129571.76
BS10 0.94 83928.21 0.26 139294.88
BS100 0.58 83928.20 0.26 141265.41
BP 0.98 62294.60 0.52 59041.84
H 0.96 63563.74 0.43 71990.62

Table 10: Classification on GREC and Protein. The best exact and approximate methods
are marked in bold style. Note that the response time is the average time needed to classify
each test graph

MUTA
R Time (ms)

DF -UB-LB 0.70089 1139134.29
PDFS -UB-LB 0.70 760861.51
A∗-LB 0.4574 856793.020
BS-1 0.55 1015688.00
BS-10 0.55 1256793.02
BS-100 0.55 1383838.66
BP 0.70 528546.64
H 0.58 525610.25

Table 11: Classification on MUTA. The best exact and approximate methods are marked
in bold style
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an effect on the classification rate. In other words, for such an application,

one does not need to have a very accurate algorithm in order to obtain a

good classification rate.

6. Conclusion and Perspectives

In the present paper, we have considered the problem of GED computa-

tion for pattern recognition. GED is a powerful and flexible paradigm that

has been used in different applications in PR. The exact algorithm A∗, pre-

sented in the literature suffers from high memory consumption and thus is

too costly to match large graphs. In this paper, we propose a parallel exact

GED algorithm, referred to as PDFS, which is considered as an extension of

a recent GED method based on depth-first tree search (Abu-Aisheh et al.,

2015). The algorithm in (Abu-Aisheh et al., 2015), referred to as DF, does

not exhaust memory as the space complexity in the worst case is quadratic

in the number of vertices i.e., O(|V1| × |V2|). In this paper, we speed up

the computation of DF by adopting a load balancing strategy. Each thread

gets one or more partial edit path and all threads solve their assigned edit

paths in a fully parallel manner. A work stealing or balancing process is

performed whenever a thread finishes all its assigned threads. Moreover,

synchronization is applied in order to ensure upper bound coherence.

In the experiments part, we proposed to evaluate both exact and approx-

imate GED approaches under large and small time constraints, on 4 publicly

available datasets (GREC, MUTA, Protein and PAH). Such constraints are
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devoted to accuracy and speed tests, respectively. Small time constraints

ensured that the approximate methods BP and H were able to find a so-

lution. Experiments demonstrated the importance of the load balancing

strategy when compared to a naive method that does not include neither

static nor dynamic load balancing. Under small and large time constraints,

PDFS proved to have the minimum deviation, the maximum number of best

found solutions and the maximum number of optimal solutions. However,

since our goal was to elaborate methods dealing with rich and complex at-

tributed graphs, BS was slightly superior to PDFS in terms of deviation

when evaluated on the MUTA dataset under large time constraint. This

could be improved by learning the best sorting strategy for a given database.

Results also indicated that there is always a trade-off between deviation and

running time. In other words, approximate methods are fast, however, they

are not as accurate as exact methods. On the other hand, DF and PDFS

take longer time but lead to better results (except on MUTA). By limiting

the run-time, our exact method provides (sub)optimal solutions and becomes

an efficient upper bound approximation of GED with the same classification

rate found by the best approximate method. Even though DF and so PDFS

were more accurate than PDFS, their classification rate was as good as the

best approximate GED (i.e., BP). On this basis, one could ask: What is the

benefit of having a more precise algorithm in an a classification context?

A future promising work could be to make PDFS more scalable to have

more precise and thus more optimal solutions under large time constraints.
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This could be achieved by extending PDFS from a single machine algorithm

to a multi-machines one. Moreover, learning to sort vertices of G1 based on

the structure and characteristics of graphs is another promising perspective

towards a faster exact algorithm.
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