
HAL Id: hal-01619313
https://espci.hal.science/hal-01619313

Submitted on 8 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New binary linear programming formulation to compute
the graph edit distance

Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux,
Sébastien Adam

To cite this version:
Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, Sébastien Adam. New binary
linear programming formulation to compute the graph edit distance. Pattern Recognition, 2017, 72,
pp.254 - 265. �10.1016/j.patcog.2017.07.029�. �hal-01619313�

https://espci.hal.science/hal-01619313
https://hal.archives-ouvertes.fr

New Binary Linear Programming Formulation to

Compute the Graph Edit Distance

Julien Lerougea, Zeina Abu-Aishehb, Romain Raveauxb, Pierre Hérouxa,
Sébastien Adama

aNormandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen, LITIS, 76000 Rouen, France
bLI, Université François Rabelais de Tours, 37200 Tours, France

Abstract

In this paper, a new binary linear programming formulation for computing the

exact Graph Edit Distance (GED) between two graphs is proposed. A funda-

mental strength of the formulations lies in their genericity since the GED can

be computed between directed or undirected fully attributed graphs. Moreover,

a continuous relaxation of the domain constraints in the formulation provides

an e�cient lower bound approximation of the GED. A complete experimental

study that compares the proposed formulations with six state-of-the-art algo-

rithms is provided. By considering both the accuracy of the proposed solution

and the e�ciency of the algorithms as performance criteria, the results show

that none of the compared methods dominate the others in the Pareto sense.

In general, our formulation converges faster to optimality while being able to

scale up to match the largest graphs in our experiments. The relaxed formu-

lation leads to an accurate approach that is 12% more accurate than the best

approximate method of our benchmark.

Keywords: Graph Edit Distance, Integer Linear Programming, Graph

Matching, Pattern Matching.

Email addresses: Julien.Lerouge@univ-rouen.fr (Julien Lerouge),
zeina.abu-aisheh@univ-tours.fr (Zeina Abu-Aisheh), romain.raveaux@univ-tours.fr
(Romain Raveaux), pierre.heroux@univ-rouen.fr (Pierre Héroux),
sebastien.adam@univ-rouen.fr (Sébastien Adam)

Preprint submitted to Pattern Recognition October 8, 2018

1. Introduction

Graphs are data structures that can describe complex entities through their

elementary components (the vertices of the graph) and the relational properties

between them (the edges of the graph). For attributed graphs, both vertices

and edges can be characterized by attributes that can vary from nominal labels

to more complex descriptions such as strings or feature vectors. This arrange-

ment leads to very powerful representations that are used in many application

domains such as computer vision, biology, chemistry or text processing. Com-

puting the dissimilarity of such graphs is a crucial issue for graph-based pattern

recognition. An enormous number of algorithms have been proposed in the

literature to solve this problem. They can be categorized as embedding-based

vs. matching-based methods.

In embedding-based methods, the key-idea is to project the input graphs to

be compared into a vector space. Then, a norm is computed in this space. Thus,

such methods bridge the gap between statistical and structural pattern recog-

nition [1, 2]. A natural way to perform this projection is to compute a feature

vector for each graph to be compared [3�6]. Another type of graph-embedding

approach consists of representing the graphs as vectors of distances to a num-

ber of graph prototypes [7], but the embedding of the graphs requires itself a

dissimilarity computation method. Graph kernels [8�10] can also be considered

as embedding-based approaches since they produce an implicit embedding of

the graphs into a Hilbert space. All of these embedding-based methods are gen-

erally computationally e�ective since they do not involve a matching process.

However, they do not take into account the complete relational properties and

do not provide a matching between the graphs.

In matching-based methods the similarity between two graphs requires the

computation and the evaluation of the "best" matching between them. Since

exact isomorphism rarely occurs in pattern analysis applications, the matching

process must be error-tolerant, i.e., it must tolerate di�erences in the topology

and/or in its labeling. To tackle this problem, spectral methods such as

2

[11] have been studied. They are based on the eigen decomposition of the

adjacency or Laplacian matrix of a graph. In this spectral framework, the

graphs are unlabeled or only severely constrained label alphabets. Another

well known error-tolerant matching-based method that can be used to evaluate

the dissimilarity between two graphs is the Graph Edit Distance (GED) [12].

In this method, a set of graph edit operations is introduced black. Each edit

operation is characterized by a cost, and the GED is the total cost of the least

expensive sequence of operations that transforms one graph into the other. The

GED is a dissimilarity measure for arbitrarily structured and/or labeled graphs.

In contrast with other approaches, it does not su�er from any restriction and

can be applied to any type of graph, including hypergraphs [13]. The GED has

been used in many applications, e.g., malware detection [14], chemioinformatics

[15], or document analysis [16].

A main usability limitation of the GED is its computational complexity

since it is known to be NP-complete [17, 18]. Computing the exact GED using

A∗ is exponential in the number of nodes and is only feasible for graphs of

a rather small size (typically 10 nodes). To overcome this limitation, many

contributions have been proposed over the last decade. Some are based on the

proposition of new heuristics to improve the performance of exact approaches

[19, 20] whereas others have proposed faster but suboptimal methods that

approximate the exact GED (e.g., [21�26]).

In this paper, we tackle the GED problem using Binary Linear Programming

(BLP). Starting from a straightforward linear formulation of the GED, we derive

a new exact BLP. This program is theoretically shown to be equivalent to the

�rst approach (i.e., it computes the exact GED) and experimentally shown to

be more e�ective. We also show that a relaxation of the domain constraints in

this new formulation provides an e�cient lower bound which can be used as an

accurate approximation of the GED.

The performance of both the exact formulations and their approximations

are compared with those of six exact and approximate approaches, including a

previous BLP-based approach proposed in [27]. Each method is evaluated from

3

both the precision and the e�ciency point of view. For the sake of equality, all

of the methods use the same edit operation cost values. These values are taken

from reference work in the literature [7, 15, 28]. The experiments are performed

on seven reference datasets which were carefully chosen to show the behaviors

of the approaches on di�erent types of graphs[28�30].

The results show that the new BLP formulation can compute an exact GED

on larger graphs than the existing approaches and can compute the GED

between richly attributed graphs (i.e., with attributes on both the vertices

and edges), which cannot be handled using the BLP formulation proposed in

[27]. They also show that our relaxed formulation is more accurate than recent

approximation-based approaches, at the cost of extra computational time.

Section 2 presents the important de�nitions that are necessary for intro-

ducing our formulations of the GED. Then, Section 3 reviews the existing

approaches for computing the GED with exact and approximate methods.

Section 4 describes the proposed BLP formulations. Section 5 presents the ex-

periments and analyzes the obtained results. Section 6 provides the study's

conclusions.

2. Problem Statement

De�nition 1. An attributed graph G is a 4-tuple G = (V,E, µ, ξ), where V is

a set of vertices; E is a set of edges such that ∀e = (i, j) ∈ E, i ∈ V and j ∈ V ;

µ : V → LV is a vertex labeling function that associates a label µ(v) to v ∈ V ,

where LV is the set labels for the vertices, and ξ : E → LE is an edge labeling

function that associates a label ξ(e) to e ∈ E, where LE is the set of labels for

the edges.

The vertices (resp. edges) label space LV (resp. LE) could be composed

of any combination of numeric, symbolic or string attributes. A graph G is

said to be simple if it has no loop (an edge that connects a vertex to it-

self) and no multiedge (several edges between the same vertices). In this case,

E ⊆ {(i, j) ∈ V ×V/i 6= j} and an edge can be unambiguously designated by the

4

pair of vertices that it connects. Otherwise, G is a multigraph and E is a multi-

set. A graph G is said to be undirected if the relation E is symmetric, i.e., if its

edges have no orientation. In this case, ∀(i, j) ∈ E, (j, i) ∈ E and (i, j) = (j, i).

Otherwise, G is a directed graph. Hence, De�nition 1 allows us to handle arbi-

trarily structured graphs (directed or undirected, simple graphs or multigraphs)

with unconstrained labeling.

The GED is commonly used to measure the dissimilarity between two graphs.

The GED is an error-tolerant graph matching method. It de�nes the dissimi-

larity of two graphs by the minimum amount of distortion that is required to

transform one graph into another [12].

De�nition 2. The graph edit distance d(., .) is a function

d : G × G → R+

(G1, G2) 7→ d(G1, G2) = min
(o1,...,ok)∈Γ(G1,G2)

k∑
i=1

c(oi)

where G1 = (V1, E1, µ1, ξ1) and G2 = (V2, E2, µ2, ξ2) are two graphs from the

set G and Γ(G1, G2) is the set of all edit paths o = (o1, . . . , ok) that allow trans-

forming G1 to G2. An elementary edit operation oi is one of vertex substitution

(v1 → v2), edge substitution (e1 → e2), vertex deletion (v1 → ε), edge deletion

(e1 → ε), vertex insertion (ε → v2) and edge insertion (ε → e2) with v1 ∈ V1,

v2 ∈ V2, e1 ∈ E1 and e2 ∈ E2. Here, ε is a dummy vertex or edge that is

used to model the insertion or deletion. Additionally, c(.) is a function that

associates a cost to each elementary edit operation oi.

The cost function c(.) is of primary interest for the GED computation and

can change the problem that is being solved. In [31] and [32], a particular cost

function for the GED is introduced, and it is shown that under this cost func-

tion, the GED computation is equivalent to the maximum common subgraph

problem. Neuhaus and Bunke [33] have shown that if each elementary opera-

tion satis�es the criteria of a distance (separability, symmetry and triangular

inequality) then the edit distance de�nes a metric between graphs. Recently,

5

some methods have been proposed to learn the matching edit cost between

graphs [34, 35]. The discussion around the cost functions is beyond the topic of

this paper, which focuses on GED computation for given costs.

When the GED is computed between the attributed graphs, the edit costs

are usually de�ned as functions of the vertices (resp. edges) attributes. More

precisely, substitution costs are de�ned as a function of the attributes of the

substituted vertices (resp. edges), whereas insertion and deletion are penalized

with a value that is linked to the attributes of the inserted/deleted vertex (resp.

edge). In our experiments, we set the cost function to the values proposed in

[7].

3. Related Works

The GED has been the subject of many contributions in the literature, in-

cluding some very complete surveys of existing approaches [36, 37]. These re-

views usually distinguish exact approaches from approximations.

3.1. Exact approaches

The �rst family of exact computation of the GED is based on the widely

known A∗ algorithm. This algorithm relies on the exploration of the tree of

solutions. In this tree, each node corresponds to a partial edition of the graph.

A leaf of the tree corresponds to an edit path that transforms one graph into the

other. The exploration of the tree is guided by developing the most promising

ways on the basis of an estimation of the GED. For each node, this estimation

is the sum of the cost associated with the partial edit path and an estimation

of the cost for the remaining path. The latter is given by a heuristic. Provided

that the estimation of the future cost is lower than or equal to the real cost, an

optimal path from the root node to a leaf node is guaranteed to be found [38]. A

simple way to ful�ll this constraint would be to set the estimation of the future

cost to zero, but this setting could lead to exploring the whole tree of solutions.

The other extreme consists of computing the real cost for the remaining edit

6

path and would require an exponential amount of time. Indeed, the smaller

the di�erence between the estimation and the real future cost is, the smaller

the number of nodes that will be expanded by the A* algorithm. The di�erent

A*-based methods published in the literature mainly di�er in the implemented

heuristics for the future cost estimation which correspond to di�erent tradeo�s

between the approximation quality and their computation time [19, 20].

In another family of algorithms, the GED is computed by solving a BLP. To

the best of our knowledge, Almohamad and Du�uaa [39] proposed the �rst BLP

formulation of the weighted graph matching problem. It consists of determining

the permutation matrix that minimizes the L1 norm of the di�erence between

the adjacency matrix of the input graph and the permuted adjacency matrix

of the target graph. More recently, Justice and Hero [27] also proposed a

BLP formulation of the GED problem. The proposed program searches for

the permutation matrix that minimizes the cost of transforming G1 into G2,

with G1 and G2 two unweighted and undirected graphs. The criterion to be

minimized (eq. 1) accounts for the costs for the matching vertices, but the

formulation does not integrate the ability to process graphs with labels on their

edges.

d(G1, G2) = min
P

n∑
i=1

n∑
j=1

c(l(Ai1), l(Aj2))Pi,j +
1

2
c(0, 1)|A1 − PA2P

T |ij (1)

where Ak is the adjacency matrix of Gk, and P is an orthogonal permutation

matrix such that PPT = PTP = I, l(Aik) is the label of the ith vertex in Gk,

while c is a cost function. A mathematical transformation is used to transform

this non linear optimization problem into a linear problem.

In the proposed formulation, the number of constraints and variables grows

quadratically with the number of vertices in the graphs, and thus, it could

impact considerably the memory consumption of the program. Moreover, the

modeling of the graphs by means of an adjacency matrix restricts the formu-

lation to the processing of simple graphs.

7

3.2. Approximations

Considering that exact computation of the GED can be performed in a

reasonable amount of time only for small graphs, and many researchers have

focused their e�ort on the computation of the GED approximations in polyno-

mial time. For example, in their paper [27], Justice and Hero proposed a lower

bound of the GED that can be computed in O((n1 + n2)7), where n1 = |V1|

and n2 = |V2|, by extending the domain of variables in P from {0, 1} to [0, 1].

In the same paper, an upper bound was proposed by reducing the GED prob-

lem to the Linear Sum Assignment Problem (LSAP). The LSAP can be solved

by the Hungarian method (also called Munkres assignment algorithm [40]) in

polynomial time O(n3) where n is the dimension of the vertex assignment cost

matrix. The cost matrix of dimension n1 + n2 was �lled due to the �rst term

of eq. 1. In the same direction, Riesen et al. [23] proposed to enrich the assign-

ment cost matrix with the edge edit costs. Finally, the vertex assignment was

used to derive an edit path, and its associated cost is an upper bound of the

GED.

In [24], Neuhaus et al. proposed two other approximations based on A∗

method. The �rst one, called A∗-BeamSearch, proposed to prune the tree of

solutions by limiting the number of concurrent partial solutions to the q most

promising solutions. At the end of the algorithm, a valid edit path and its as-

sociated cost are provided, but there is no guarantee that it corresponds to the

optimal path, since the latter could have been eliminated in earlier steps of the

algorithm. The parameter q manages the trade-o� between the combinatorial

cost and the quality of the approximation. This method provides an upper

bound of the exact GED. In the same paper, a method called A∗-Pathlength is

proposed to speed up the access to a leaf node in the tree of solutions by giving

a higher exploration priority to long partial edit paths. This strategy is moti-

vated by the observation that �rst assignments are the most computationally

expensive and that they are rarely called into question.

More recently, in [41], the vertex assignment computed by means of bipartite

graph matching is used as an initialization step for a genetic algorithm that

8

attempts to improve the quality of the approximation. Indeed, from any vertex

assignment, it is possible to derive an edit path and �nally compute its cost

[23]. The vertex assignment that is optimal in terms of vertex substitution is

not always optimal for the whole edit path. The initial population is generated

by deriving mappings that are mutated versions of the mapping that has been

determined by the Hungarian algorithm. The probability of a vertex mapping to

be selected is linked to the vertex substitution cost. The lower the corresponding

edit distance is, the better the individual �ts the objective function. The

genetic algorithm iterates by selecting and mixing several mappings.

Fischer et al. [20] proposed to integrate in the A* algorithm a heuristic

based on a modifed Hausdor� distance. This distance is computed in a time

complexity of O(n1.n2). This heuristic has also been used on its own without

the A* algorithm in [21]. GED approximations have also been proposed in a

probabilistic framework [25]. Thus, the objective is to �nd the vertex assign-

ment that maximizes the a posteriori probability while considering the vertex

attributes. However, the corresponding heuristics are unbounded and cannot

be exploited by branch and bound algorithms to prune the tree of solutions or

to e�ciently prioritize its exploration in the A* algorithm.

4. Graph Edit Distance Using Binary Linear Programming

In this article, the GED problem is modeled by a BLP which is a restriction

of integer linear programming (ILP) in which the variables are binary. Hence,

its general form is the following:

min
x

cTx (2a)

subject to Ax ≤ b (2b)

x ∈ {0, 1}n (2c)

where c ∈ Rn, A ∈ Rn×m and b ∈ Rm are data of the problem. A feasible

solution is a vector x of n binary variables (2c) that respects linear inequality

constraints (2b). If the program has at least one feasible solution, then the

9

optimal solutions are the solutions that minimize the objective function (2a),

which is a linear combination of variables of x weighted by the components of

the vector c.

In this section, we present some formulations that were written for GED

computation. The �rst is a straightforward formulation deduced from De�nition

2 whereas the second is more re�ned, with fewer variables and constraints. The

third concerns undirected graphs. Then, we discuss how the formulations are

solved, and the impact of their di�erences on performance issues. We also show

that relaxing formulations can provide a lower bound of the GED.

4.1. Modelling the GED problem as a BLP

4.1.1. Variable and cost functions de�nitions

Our goal is to compute the GED between two graphs G1 = (V1, E1, µ1, ξ1)

and G2 = (V2, E2, µ2, ξ2). In this section, for the sake of simplicity of notations,

G1 and G2 are simple directed graphs. However, the formulations can be applied

without modi�cation to multigraphs, and with some slight modi�cations in the

undirected case (these modi�cations are explained in 4.3).

In De�nition 2, the edit operations that are allowed to transform the graphs

G1 and G2 are (i) the substitution of a vertex (respectively, an edge) of G1 with

a vertex (resp. an edge) of G2, (ii) the deletion of a vertex (or an edge) from G1

and (iii) the insertion of a vertex (or an edge) in G1. In Table 1, we de�ne a set

of binary variables for each of these edit operations. For example, we are given

two sets of vertices V1 and V2, where i a vertex from V1, which is substituted

with k a vertex from V2 has an edit cost of ci,k. Variable xi,k = 1 if a vertex i

is substituted with a vertex k and it is 0 otherwise. The concept holds true for

the other variables.

Using these notations, an edit path between G1 and G2 is de�ned as a

6-tuple (x,y,u,v, e, f) where x = (xi,k)(i,k)∈V1×V2
, y = (yij,kl)(ij,kl)∈E1×E2

,

u = (ui)i∈V1
, e = (eij)ij∈E1

, v = (vk)k∈V2
and f = (fkl)kl∈E2

(see Table 1 for

the de�nition of each variable).

10

To evaluate the global cost of an edit path, the elementary costs for each

edit operation must be de�ned. The notations used for these costs are given in

Table 1. These cost functions traditionally depend on the labels of the vertices

and edges. As stated before, de�ning these cost functions is out of the scope of

our contributions and reference de�nitions are used in our experiments.

Table 1: Notations for the GED framework

Edit operation Variable Cost

Substitution of vertex i by vertex k xi,k ci,k

Deletion of vertex i ui ci,ε

Insertion of vetex k vk cε,k

Substitution of edge ij by edge kl yij,kl cij,kl

Deletion of edge ij eij cij,ε

Insertion of edge kl fkl cε,kl

4.1.2. Objective function

The objective function (3) to be minimized is the overall cost induced by an

edit path (x,y,u,v, e, f) that transforms graph G1 into graph G2.

C(x,y,u,v, e, f) =
∑
i∈V1

∑
k∈V2

ci,k · xi,k +
∑
ij∈E1

∑
kl∈E2

cij,kl · yij,kl +
∑
i∈V1

ci,ε · ui+

∑
k∈V2

cε,k · vk +
∑
ij∈E1

cij,ε · eij +
∑
kl∈E2

cε,kl · fkl

(3)

4.1.3. Constraints

The constraints are designed to guarantee that the admissible solutions of

the BLP are edit paths that transform G1 in G2. An edit path is considered to

be admissible if and only if the following conditions are respected. (i) It pro-

vides a one-to-one mapping between a subset of the vertices of G1 and a subset

of the vertices of G2. This one-to-one mapping is equivalent to vertex substi-

tution. The remaining vertices are either deleted or inserted. (ii) It provides

11

a one-to-one mapping between a subset of the edges of G1 and a subset of the

edges of G2. This one-to-one mapping is equivalent to edge substitution. The

remaining edges are either deleted or inserted. (iii) The vertex mappings and

edge mappings are consistent, i.e., the graph topology is respected.

(i) Vertex mapping constraints The constraint (4) ensures that each

vertex of G1 is either mapped to exactly one vertex of G2 or deleted from G1,

while the constraint (5) ensures that each vertex of G2 is either mapped to

exactly one vertex of G1 or inserted in G1:

ui +
∑
k∈V2

xi,k = 1 ∀i ∈ V1 (4)

vk +
∑
i∈V1

xi,k = 1 ∀k ∈ V2 (5)

(ii) Edges mapping constraints The constraints (6) and (7) guarantee a

valid mapping between the edges:

eij +
∑
kl∈E2

yij,kl = 1 ∀ij ∈ E1 (6)

fkl +
∑
ij∈E1

yij,kl = 1 ∀kl ∈ E2 (7)

(iii) Topological constraints The respect of the graph topology in the

mapping is described in the following proposition :

Proposition 1. An edge ij ∈ E1 can be mapped to an edge kl ∈ E2 only if

the head vertices i ∈ V1 and k ∈ V2, and tail vertices j ∈ V1 and l ∈ V2, are

respectively mapped.

This quadratic constraint is expressed linearly with constraints (8) and (9):

• ij and kl can be mapped only if their head vertices are mapped:

yij,kl ≤ xi,k ∀(ij, kl) ∈ E1 × E2 (8)

• ij and kl can be mapped only if their tail vertices are mapped:

yij,kl ≤ xj,l ∀(ij, kl) ∈ E1 × E2 (9)

12

Equations 8 and 9 contribute not only to edge substitutions, but also to edge

deletions and insertions. Let i ∈ V1 such that i is deleted from G1 (ui = 1).

Using Equation 4, we deduce that ∀k ∈ V2, xi,k = 0. Then, using Equation 8,

∀j ∈ V1 such that ij ∈ E1 and ∀kl ∈ E2, yij,kl ≤ xi,k = 0 and, using Equation 6,

eij = 1, which deletes edge ij. Consequently, if i ∈ V1 is deleted from G1, then

all of the edges ij ∈ E1 are deleted from G1. Similarly, if k ∈ V2 is inserted into

G1, then all of the edges kl ∈ E2 are inserted into G1. These two properties

also hold true for the tail vertices, which ensures a consistent edge mapping

between the two sets E1 ∪ ε and E2 ∪ ε.

4.1.4. Straightforward formulation F1

Placing Equations 3 to 9 together with domain constraints that ensure that

the solution is made of binary variables leads to a straightforward version of

the BLP formulation called F1. This formulation F1 has |V1| + |V2| + |E1| +

|E2|+ |V1| · |V2|+ |E1| · |E2| variables and |V1|+ |V2|+ |E1|+ |E2|+ 2 · |E1| · |E2|

constraints (without the domain constraints).

4.2. Reducing the size of the formulation

In this subsection, we present a second exact formulation of the GED called

F2, which has been derived from the formulation F1. We show that this for-

mulation is theoretically equivalent to F1 and that it reduces the number of

variables and the number of constraints.

4.2.1. Reducing the number of variables

The mapping constraints (4), (5),(6) and (7) can be transformed into in-

equality constraints, without changing their role in the program:∑
k∈V2

xi,k ≤ 1 ∀i ∈ V1 (10)

∑
i∈V1

xi,k ≤ 1 ∀k ∈ V2 (11)

∑
kl∈E2

yij,kl ≤ 1 ∀ij ∈ E1 (12)

13

∑
ij∈E1

yij,kl ≤ 1 ∀kl ∈ E2 (13)

Replacing in Equation 3 the variables u,v, e and f by their expressions de-

duced from equations (4),(5), (6) and (7), we get a new objective function:

C ′(x,y) =
∑
i∈V1

∑
k∈V2

(ci,k − ci,ε − cε,k) · xi,k +
∑
ij∈E1

∑
kl∈E2

(cij,kl − cij,ε − cε,kl) · yij,kl + γ

(
with γ =

∑
i∈V1

ci,ε +
∑
k∈V2

cε,k +
∑
ij∈E1

cij,ε +
∑
kl∈E2

cε,kl

)
(14)

Equation (14) shows that the GED can be obtained without explicitly com-

puting the variables u,v, e and f . Once the formulation solved, all insertion and

deletion variables can be a posteriori deduced from the substitution variables.

4.2.2. Reducing the number of constraints

In the formulation F1, the number of topological constraints, (8) and (9), is

|E1|·|E2|. Therefore, on average, the number of constraints grows quadratically

with the density of the graphs. We show that it is possible to formulate the GED

problem with potentially less constraints, leaving the set of solutions unchanged.

To this end, we mathematically express Proposition 1 in another way. We

replace the constraints (8) and (9) by the following ones:

• Given an edge ij ∈ E1 and a vertex k ∈ V2, there is at most one edge

whose initial vertex is k that can be mapped with ij:∑
kl∈E2

yij,kl ≤ xi,k ∀k ∈ V2,∀ij ∈ E1 (15)

• Given an edge ij ∈ E1 and a vertex l ∈ V2, there is at most one edge

whose terminal vertex is l that can be mapped with ij:∑
kl∈E2

yij,kl ≤ xj,l ∀l ∈ V2,∀ij ∈ E1 (16)

Proposition 2. Let Γ1 be the set of edit paths (between G1 and G2) implied by

the set of admissible solutions of F1, and let Γ2 be the set of edit paths obtained

14

similarly by replacing in F1 the constraints (8) and (9) by the constraints (15)

and (16). Then, Γ1 = Γ2.

Proof.

Γ2 ⊆ Γ1: Let ij ∈ E1 and kl ∈ E2, and let us suppose that (15) is satis�ed.

xi,k ≥
∑
kl′∈E2

yij,kl′ ⇒ xi,k ≥ yij,kl +
∑

kl′∈E2,kl′ 6=kl

yij,kl′ ⇒ xi,k ≥ yij,kl

Thus, constraint (8) is satis�ed for all ij ∈ E1 and for all kl ∈ E2. Similarly,

we deduce that (9) is satis�ed using the constraint (16).

Γ1 ⊆ Γ2: Let ij ∈ E1 and k ∈ V2. If {l ∈ V2 : kl ∈ E2} = ∅, then
∑
kl∈E2

yij,kl =

0, and (15) is satis�ed. Otherwise, using constraint (8), we have the following:

∀kl ∈ E2, xi,k ≥ yij,kl ⇒ xi,k ≥ max
kl∈E2

(yij,kl)

(6) ensures that card{l′ ∈ V2 : yij,kl = 1} ≤ 1, and thus, maxkl′∈E2
(yij,kl′) =∑

kl′∈E2
yij,kl′ ⇒ xi,k ≥

∑
kl′∈E2

yij,kl′ and (15) is still satis�ed.

Thus, the constraint (15) is satis�ed for all ij ∈ E1 and for all k ∈ V2.

Similarly, we prove that (16) is satis�ed using (9) and (7).

The number of topological constraints, (15) and (16), is now |E1| · |V2|. On

average, it grows linearly with the density of the graphs. This relationship

leads to substantially shorter formulations of the GED as the numbers of graph

vertices and edges grow. In addition, we prove that the constraints (12) and

(13) are not necessary to the formulation of the GED problem, since they are

implied by other constraints of the BLP.

Proposition 3. Constraint (12) is implied by (10) and (15)

Proof. Let ij ∈ E1. Given (15), we have∑
kl∈E2

yij,kl ≤ xi,k ∀k ∈ V2 ⇒
∑
k∈V2

∑
kl∈E2

yij,kl ≤
∑
k∈V2

xi,k

We reduce the left term of this inequation and use (10):∑
kl∈E2

yij,kl ≤
∑
k∈V2

xi,k ≤ 1

15

Thus, (12) is implied by (10) and (15). Similarly, we prove that (13) is

implied by (11) and (16).

4.2.3. Simpli�ed formulation F2

The results obtained in 4.2.1 and 4.2.2 show that the GED problem can

be solved using (14) as the objective function and (10), (11), (15) and (16) as

the constraints. We have �nally arrived at a new formulation F2 of the GED

problem, as follows:

min
x,y

(∑
i∈V1

∑
k∈V2

(
ci,k−ci,ε−cε,k

)
·xi,k+

∑
ij∈E1

∑
kl∈E2

(
cij,kl−cij,ε−cε,kl

)
·yij,kl

)
+γ

(17a)

subject to
∑
k∈V2

xi,k ≤ 1 ∀i ∈ V1 (17b)

∑
i∈V1

xi,k ≤ 1 ∀k ∈ V2 (17c)

∑
kl∈E2

yij,kl ≤ xi,k ∀k ∈ V2,∀ij ∈ E1 (17d)

∑
kl∈E2

yij,kl ≤ xj,l ∀l ∈ V2,∀ij ∈ E1 (17e)

Here, γ is not a function of x and y. It does not impact the minimization

problem. However, γ is mandatory to obtain the GED value.

The formulation F2 has |V1| · |V2|+ |E1| · |E2| variables and |V1|+ |V2|+2|V2| ·

|E1| constraints. The domain constraints have not been account for because

they are, by design, part of the BLP framework.

4.3. Extension to undirected graphs

Suppose that G1 and G2 are undirected graphs, i.e., their edges have no

orientation. The notations ij and ji refer to the same edge of E1 and kl and

lk refer to the same edge of E2. This new assumption leads to revise the sets

of constraints (17d) and (17e) into the following single constraint:∑
kl∈E2

yij,kl ≤ (xi,k + xj,k) ∀k ∈ V2,∀ij ∈ E1 (18)

16

Indeed, given an edge ij ∈ E1 and a vertex k ∈ V2, there is at most one edge

that is incident to k that can be matched to ij. Moreover, xi,k and xj,k cannot

be simultaneously equal to 1, and thus, the sum xi,k + xj,k is at most equal to

1.

4.4. Comparing the solving of F1 and F2 and obtaining lower bounds

In the previous subsection, the objective functions of F1 and F2 are equal.

Furthermore, propositions 1 and 2 demonstrated that the set of constraints of

F1 and F2 describes the exact same set of admissible solutions. Since F1 and

F2 are two minimization problems with the same objective function over the

same set of admissible solutions, their optimal solution is the same, and when

optimality is reached, the value of their objective functions is the GED. Thus,

they are strictly equivalent. However, we have also shown that F2 uses fewer

variables than F1, and depending on the density of the graphs, it potentially

uses fewer constraints to solve the same problem. Thus, in terms of the solution

time and the used memory, they might not behave the same.

Solving an ILP that is de�ned using Equations (2a) to (2c) is NP-hard

[18], and thus, exploring the entire solution tree would take an exponential

amount of time. However, dedicated solvers have been developed to reduce the

number of explored solutions and the solution time, by using a branch-and-cut

algorithm along with some heuristics [42]. Given an instance of the problem, the

solver explores the tree of solutions with the branch-and-bound algorithm and

�nds the best feasible solution, in terms of the objective function optimization.

The continuous relaxation of an ILP is a linear program (LP) in which

the constraints are unmodi�ed but the variables are now continuous. The LP

solution is a lower bound for the solution in the initial problem. It can be

reached in polynomial time O(n3.5) with the interior point method [43] where

n is the number of variables in the model. This lower bound helps the ILP in

�nding the solution by pruning the exploration of the solution tree.

The continuous relaxation complexity is related to the number of variables

and constraints in the model. Since F2 holds fewer variables and constraints

17

than F1, the continuous relaxation of F2 is faster to compute. A straightforward

e�ect is that solving the ILP of F2 might also be faster than F1, since the LP

relaxation is used by the ILP solving methods to cut the unpromising branches.

An important aspect to be highlighted here is that continuous relaxation can

also be used to approximate the optimal objective value in polynomial time. We

explore this opportunity in the experimental part of the paper by calling F1LP

(resp. F2LP) the continuous relaxation of F1 (resp. F2). To accomplish this

goal, we only substitute the discrete space {0, 1} by the continuous space [0, 1]

in the domain constraints. In the experiments of Section 5, F1LP and F2LP

are compared to approximate methods from the literature.

5. Experiments

This section aims at evaluating the proposed contributions through a robust

experimental study that compares ten methods on reference datasets. We �rst

describe the methods that have been studied, the datasets and the protocol.

Then, the results are presented and discussed.

5.1. Studied methods

In this experimental part, our proposals (F1, F2, F1LP and F2LP) are com-

pared against six GED algorithms from the literature. From the related works,

we chose two exact methods and four approximate methods. On the exact

method side, the A∗ algorithm applied to the GED problem [19] is a foun-

dational work. In our tests, the heuristic is computed using the bipartite

approximation [19]. A∗ with a bipartite heuristic is the most well-known exact

GED method and is often used to evaluate the accuracy of the approximate

methods. The second exact method is the BLP proposed by Justice and Hero

in [27]. This method, called JH in the paper, is directly linked to our proposal.

Since this method cannot address edge attributes, we could not perform JH on

all of our datasets.

18

On the approximate method side, we can distinguish three families of meth-

ods in the literature: tree-based methods, assignment-based methods and set-

based methods. For the tree-based methods, a truncated version of A∗ called

A∗-BeamSearch was chosen (BS) using a bipartite heuristic. This method is

known to be one of the most accurate approximations from the literature [24].

Among the assignment-based methods, we selected the bipartite graph match-

ing (BP) that is described in [23]. This upper bound was shown to be a good

compromise between the speed and accuracy. We also added the Fast Bipartite

method (FBP) [44] since it is an extension of BP. FBP has been used to ques-

tion the community about the accuracy and speed-up [45]. Finally, we picked

a set-based method proposed in [21]. This method (H) provides a lower bound

of GED that is obtained using Hausdor� matching.

5.2. Datasets

In this paper, GED algorithms are evaluated on six di�erent real world

graph datasets and a synthetic dataset. These datasets have been chosen

by carefully reviewing all of the publicly available datasets that have been

used in the reference works mentioned in section 3 (LETTER, GREC, COIL,

Alkane, FINGERPRINT, PAH, MUTA, PROTEIN and AIDS to name the most

frequent datasets). On the basis of this review, a subset of these datasets has

been chosen to obtain a good representativeness of the di�erent graph features

that can a�ect the GED computation (size, labeling, directed/undirected):

GREC [29] is composed of undirected graphs that have rather small size (i.e.,

up to 20 vertices). In addition, continuous attributes on vertices and edges play

an important role in the matching procedure. Such graphs are representative of

pattern recognition problems.

MUTA of molecules [29] is representative of exact matching problems because

a signi�cant part of the topology together with the corresponding vertex and

edge labels in G1 and G2 are required to be identical. In addition, this set of

graphs gathers large instances with up to 70 vertices.

PROTEIN [29] is a molecule dataset similar to MUTA or PROTEIN. How-

19

ever, the stringent constraints imposed by exact vertex matching are relaxed

due to the string edit distance. Thus, the matching process can be tolerant

and accommodate to di�erences in the labels.

ILPISO [28] stands apart from the others in the sense that this dataset holds

directed graphs. The aim is to illustrate the �exibility of our proposal in that

it can handle di�erent types of graphs.

LETTER [29] is broken down into three parts (LOW, MED, HIGH) which

correspond to distortion levels. Assessing methods according to the noise level

is an interesting viewpoint when addressing pattern recognition problems. The

LETTER dataset is useful because it holds graphs that have a rather small

size, which makes feasible the computations of the GED methods.

PAH and Alkane1 are purely structural databases with no labels at all.

All of these datasets are publicly available on the IAPR TC15 website2.

A synthesis that concerns those data is given in Table 2. To evaluate the

algorithms' behaviors when the size of the problem grows, we have built subsets

in which all of the graphs have the same number of vertices for GREC, MUTA,

PROTEIN and ILPISO. The details that concern the subset sizes are given

in Table 2. The cost functions have a parameter α ∈ [0, 1] that is domain-

dependent. α corresponds to the weighting parameter that controls whether the

edit operation cost on the vertices or on the edges is more important. We borrow

the settings from [7] for the GREC, PROT, MUTA and LETTER databases

and from [15] for the Alkane and PAH datasets. Elementary operation costs are

reported in Table 2. With the goal of reproducibility, all of the graph subsets

and the code of the cost function are available at https://sites.google.com/

site/blpged/.

1https://brunl01.users.greyc.fr/CHEMISTRY/index.html
2https://iapr-tc15.greyc.fr/links.html

20

https://sites.google.com/site/blpged/
https://sites.google.com/site/blpged/
https://brunl01.users.greyc.fr/CHEMISTRY/index.html
https://iapr-tc15.greyc.fr/links.html

T
a
b
le

2
:
S
u
m
m
a
ry

o
f
th
e
g
ra
p
h
d
a
ta
se
ts
'
ch
a
ra
ct
er
is
ti
cs
,
su
b
se
ts

d
ec
o
m
p
o
si
ti
o
n
a
n
d
co
st

fu
n
ct
io
n
o
f
th
e
d
a
ta
se
ts

�
δ a

,b
is

th
e
K
ro
n
ec
k
er

D
el
ta

fu
n
ct
io
n

D
a
ta
se
t

#
G
ra
p
h
s

V
er
te
x
la
b
el
s

E
d
g
e
la
b
el
s

|V
|
|E
|
D
ir
ec
te
d
c i
,ε

=
c ε
,k
c i
j,
ε

=
c ε
,k
l
α

c i
k

c i
j,
k
l

#
ve
rt
ic
es

(#
g
ra
p
h
s)

P
A
H

7
0

C
h
em

ic
a
l
sy
m
b
o
l

V
a
le
n
ce

4
0

4
0
.8

F
a
ls
e

9
0

1
5

0
.5

E
x
te
n
d
ed

E
u
cl
id
ea
n
d
is
ta
n
ce

1
−
δ ξ

(i
j
),
ξ
(k
l)

5
(4
1
)
1
0
(7
4
)
1
5
(3
4
)
2
0
(3
9
)

P
R
O
T

1
8
8

x
,
y
co
o
rd
in
a
te
s

L
in
e
ty
p
e

1
6
.6

1
7
.2

F
a
ls
e

1
1

1
0
.7
5
E
x
te
n
d
ed

st
ri
n
g
ed
it
d
is
ta
n
ce

1
−
δ ξ

(i
j
),
ξ
(k
l)
2
0
(1
5
)
3
0
(1
3
)
4
0
(2
2
)

M
U
T
A

5
0

T
y
p
e
a
n
d
a
a
-s
eq
u
en
ce

T
y
p
e
a
n
d
d
is
ta
n
ce

3
0

6
2
.1

F
a
ls
e

1
1

1
1

0
.2
5

1
−
δ µ

(i
),
µ

(k
)

1
−
δ ξ

(i
j
),
ξ
(k
l)
1
0
(1
0
)
2
0
(1
0
)

..
..

7
0
(1
0
)

IL
IP
S
O

3
6

S
ca
la
r
va
lu
e

S
ca
la
r

2
8
.3

5
4

T
ru
e

6
6
.6

6
6
.6

0.
5

L
1
n
o
rm

L
1
n
o
rm

1
0
(1
2
)
2
5
(1
2
)
5
0
(1
2
)

L
E
T
T
E
R

7
5

N
o
n
e

N
o
n
e

8
.8

7
.8

F
a
ls
e

0
.3

0
.5

0
.7
5

L
2
n
o
rm

1
−
δ ξ

(i
j
),
ξ
(k
l)
N
o
su
b
se
ts

A
lk
a
n
e

1
0

N
o
n
e

N
o
n
e

2
0
.8

2
4
.5

F
a
ls
e

3
3

0
.5

1
−
δ µ

(i
),
µ

(k
)

1
−
δ ξ

(i
j
),
ξ
(k
l)
N
o
su
b
se
ts

G
R
E
C

7
5
0

x
,
y
co
o
rd
in
a
te
s

N
o
n
e

4
.7

3
.9

F
a
ls
e

3
3

0
.5

1
−
δ µ

(i
),
µ

(k
)

1
−
δ ξ

(i
j
),
ξ
(k
l)
N
o
su
b
se
ts

21

5.3. Experimental protocol

Our experiments were conducted in the context of graph comparisons.

Let S be a graph dataset that consists of m graphs, S = {G1, G2, ..., Gm}.

Let P = Pe ∪ Pa be the set of all of the GED methods listed in subsec-

tion 5.1, with Pe = {A*, JH, F1, F2} the set of exact methods and Pa =

{BP, BS, FBP, H, F1LP, F2LP} the set of approximate methods. The param-

eter q of BS was set to 10. Given a method p ∈ P, we computed the square

distance matrix Mp ∈ Mm×m(R+), which holds every pairwise comparison

Mp
i,j = dp(Gi, Gj), where the distance dp(Gi, Gj) is the value returned by the

method p on the graph pair (Gi, Gj) within a certain time limit, while using

the cost metaparameters de�ned in Table 2. Due to the large number of match-

ings to be computed and the exponential complexity of the algorithms tested,

we allowed a maximum of 300 seconds for any distance computation. When

the time limit was over, the best approximation found thus far was outputted

by the given method. This time constraint was su�ciently large to allow the

methods to search deeply into the solution space and to ensure that many tree

nodes were explored. The key idea was to reach optimality whenever it was

possible or at least to get as close as possible to the Graal, the optimal solution

that corresponds to the exact distance.

Based on this context of pairwise graph comparisons, a set of metrics is

de�ned to measure the accuracy and speed of all of the methods.

5.3.1. Accuracy metrics

To quantify the error in the approximate methods, we compute an index

called the deviation. This index relies on a reference matrix that holds either

the optimal GED whenever it is possible to compute it, or the lowest approxi-

mation found among all the methods. In the latter case, the lower bounds (H,

F1LP and F2LP) are removed from the eligible reference methods since they

do not represent feasible solutions and can not represent real sequences of edit

22

operations. Hence, the deviation is computed on a subset n using equation 19.

deviation(i, j)p =
|Mp

i,j −Ri,j |
Ri,j

,∀(i, j) ∈ J1,mK2,∀p ∈ P (19)

where Ri,j is de�ned in equation 20.

Ri,j = min
p∈P\{F1LP,F2LP,H}

{Mp
i,j}, ∀(i, j) ∈ J1,mK2 (20)

Ri,j is either the best upper bound or the optimal solution when the time

available allows its computation. For a given method, the deviation can express

the error made by a suboptimal solution in terms of the percentage of the best

solution. For each subset indexed by n, the mean deviation is derived as follows

in equation 21 :

deviationpn =
1

m×m

m∑
i=1

m∑
j=1

deviation(i, j)pn (21)

where p ∈ P, n ∈ [1,#subsets] and deviation(i, j)pn stands for the deviation

computed on subset n. To obtain comparable results between the datasets,

the mean deviations are normalized between [0, 1] using equation 22:

deviation scorep =
1

#subsets

#subsets∑
n=1

deviationpn
maxdevn

(22)

where maxdevn = max deviationpn ∀p ∈ P

5.3.2. Speed metrics

To evaluate the convergence speeds of algorithms, the mean time for each

dataset is derived as follows in equation 23 :

timepn =
1

m×m

m∑
i=1

m∑
j=1

time(Gi, Gj)
p
n (23)

with (i, j) ∈ J1,mK2, n ∈ [1,#subsets] and time(i, j)pn stands for the computing

time on subset n.

Finally, we introduce a last metric called the speed score where the running

time is normalized between [0, 1] as follows in equation 24 :

speed scorep =
1

#subsets

#subsets∑
n=1

timepn
maxtimen

(24)

23

5.3.3. Experimental settings

In this practical work, BP was provided by the Institute of Computer Sci-

ence and Applied Mathematics of Bern3, while the other methods were re-

implemented. All of the methods are implemented in Java 1.7 except for the

F1, F2 and JH models which were implemented in C# using CPLEX Concert

Technology. CPLEX 12.6 was chosen since it is known to be one of the best

mathematical programming solvers. All of the methods were run on a 2.6 GHz

quad-core computer with 8 GB RAM. For the sake of comparison, none of the

methods were parallelized and CPLEX was set up in a deterministic manner.

5.4. Results

The discussion that concerns the obtained results is organized into three

parts. First, we compare only exact methods. Then, we include approximate

approaches in the discussion. Finally, we draw a synthesis by comparing all of

the methods from a multi-objective point of view.

5.4.1. Comparing exact methods

From a theoretical point of view, the main criterion that characterizes an

exact GED computation method is its computation time, i.e., its speed scorep.

From a practical point of view, solving for the exact GED can be infeasible

in a reasonable amount of time and can overstep the memory capacity (e.g.,

using A*). For the execution time, it is well admitted that a time limit can

be set. When this time limit is reached, the solver returns the best solution

found thus far, which is not necessarily the optimal solution. Thus, the devia-

tion deviation scorep is computed to characterize the accuracy of the proposed

solution. When memory problems occur, the solver can not return any solution

and the deviation can not be computed.

The obtained results when comparing only exact methods are presented in

columns 1-4 of Table 3. Three values are given to qualify each method of Pe

3http://www.iam.unibe.ch/fki/

24

http://www.iam.unibe.ch/fki/

on each dataset: the percentage of instances solved to optimality (without time

or memory problems), the mean deviations (di�erent from 0 when optimality

is not reached for all the instances) and the running time. If the time limit of

300 seconds is reached for some instances, the �rst value is less than 100. If the

memory limit is reached, then "OM" appears in the table. The values "NA"

means that the algorithm can not be applied to the dataset. It occurs for JH on

GREC, PROT and ILPISO, since JH formulation does not account for the edge

labels. As expected, A* is the worst method in Table 3. It reaches the optimal

solution only for datasets composed of very small graphs (Alkane, LETTER and

GREC10). When the graphs are larger than 10 vertices, all of the instance

are not optimally solved, and the error grows (reaching for example 30% on

GREC-15). Beyond 15 vertices, A* cannot converge to optimality because of

the memory saturation phenomenon. In fact, the size of the list OPEN that

contains pending solutions grows exponentially according to the graph size and

the bipartite heuristic fails to prune the search tree e�ciently.

When analyzing the F1 and F2 results, it can be seen that for datasets

composed of smaller graphs (Alkane, LETTER, GREC, MUTA10-20), F1 and

F2 both converge to optimality. In these cases, F2 is faster than F1, with a

factor that is between 2 and 6. For larger graphs (PAH and MUTA), the

optimal solution is not always reached, because of the time restriction. As an

example, on PAH, which contains graphs of up to 24 vertices, the F1 deviation

is not zero and the percentage of optimal solutions is only 51%. On this dataset,

F2 is faster and converges to the optimal solution for all of the instances. This

con�guration also occurs for GREC20. For datasets where both F1 and F2 do

not solve all of the instances to optimality, the deviation is lower for F2 than

for F1. The deviation gap between the two methods can reach 20% on PAH.

All of these results corroborate the theoretical analysis provided in Section 4.4.

One can highlight that for the largest graphs, F1 and F2 take similar amount

of time. This �nding can be explained by the fact that the time limit is reached

for the majority of instances by both methods.

JH performs very well in terms of speed and accuracy. For datasets that

25

gather rather small graphs, such as LETTER, Alkane and MUTA10, all of the

instances are completely solved to optimality by JH, with a computing time

that is slightly worse than using F2. When the graphs are medium-size (PAH

and MUTA20), JH becomes faster than F2. For MUTA-30 to MUTA-60, the

number of optimal solutions drastically decreases for every method however JH

could still �nd 50% of the optimal solutions on MUTA-50 against 11% and 10%

for F2 and F1, respectively. Beyond its inability to consider edge labels, the only

weakness of JH is a memory exhaustion phenomenon when the graphs hold 70

vertices. On MUTA-70, JH could not �nd any solution for half of the instances

while F1 and F2 �nd some solutions. This result shows that our proposal can

better scale up to large graphs than the Justice and Hero model from a memory

point of view. This behavior corroborates the theoretical statement made in

section 3.1, in the JH's model, the number of constraints and variables grows

quadratically as a function of the number of vertices in the graphs (|V1|+ |V2|)2,

and thus, it does impact considerably the memory consumption of the program.

5.4.2. Comparing approximate methods

Columns 5 to 10 in Table 3 present the accuracy and time performance

that is observed for approximate methods under the experimental protocol pre-

sented above. The mean deviation and mean running time are reported for each

method on each subset. For the objective of obtaining a quantitative compari-

son, the accuracy gaps (deviationpi−deviationpj) and time ratio (timepi/timepj)

between the methods are tabulated in Table 4. When examining the mean

deviation of the methods in Pa = {BP, BS, FBP, H, F1LP, F2LP}, the main

observation is that F1LP and F2LP are by far the most accurate approximate

methods for the computation of the GED (see Table 3 and Table 4). More pre-

cisely, F2LP is 4.3% more accurate than F1LP. Because F2LP contains fewer

variables and fewer constraints than F1LP, this observation con�rms that the

time complexity for solving a linear program increases with the number of vari-

ables and the number of constraints. F2LP is also 12.1% more accurate than

BS which is the most accurate of the state-of-the-art approximate methods.

26

A �ner examination according to the type of dataset leads us to conclude

that the smaller the graphs are, the better the approximation. For small at-

tributed graphs (LETTER, GREC) F2LP leads to a near-optimal approxima-

tion and achieves a very low or null deviation. On GREC, the error committed

is less than 1%. The deviation of F2LP increases with the size of the graph. It

can reach 25% on PAH or MUTA but remains lower than any other approximate

method.

As it was the case for exact methods, we can also note that the datasets

that are composed of graphs without any label, such as PAH or Alkane, are very

di�cult to process. However, all of the instances were solved by approximate

methods within the time limit of 300 s. We can then conclude that each method

returned its best attainable approximation.

As mentioned earlier, lower bounds are also used by branch-and-cut tech-

niques to prune the search space when solving optimization problems. The

good performance of F2LP contributes to explaining the convergence speed of

F2 over F1 as it prunes the search space more e�ciently.

Table 3 also reports the average time to compute a graph comparison for

each method and each subset. All of the approximate methods are faster to

compute than any of the exact methods. Among the approximate methods, H,

BP and FBP are by far the fastest methods. They provide comparable speed

results. Any instance of our datasets is solved by these methods in less than

one second. The advantage of FBP over BP does not appear clearly. It can

be explained by our experiments protocol. The graphs to be compared have

comparable size on 14 subsets. When |V1| ' |V2|, this case corresponds to the

FBP worst case because a cost matrix of size |V1| × |V2| must be processed.

The speed gap with other approximate methods (BS, F1LP and F2LP) in-

creases with the size of the graphs. It reaches a factor of 5000 on MUTA-70

between H and F2LP. As conjectured in 4.4, F2LP is faster to compute than

F1LP, mainly because the former contains fewer variables and constraints.

27

●●
●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Speed score

D
ev

ia
tio

n
sc

or
e

F1F2
F1LPF2LP

BP

BS

H

FBP

A*

F1
F2
F1LP
F2LP
BP
BS
H
FBP
A*

(a) GREC

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Speed score

D
ev

ia
tio

n
sc

or
e

F1

F2

F1LP

F2LP

BP

BS

H

FBP

JH

F1
F2
F1LP
F2LP
BP
BS
H
FBP
JH

(b) MUTA

Figure 1: A synthesis on deviation and response time. Lowest values are the best.

5.4.3. Synthesis

As expected, it can be observed that the exact methods require more time

than the approximate methods and that the fast methods often lead to a rough

approximation. To illustrate this compromise, Figure 1 presents the speed-

deviation performance of each method for the GREC and MUTA. JH could

not be applied on GREC because it does not handle labels on edges. On the

other hand, A* does not appear on MUTA because every instance has led to an

exhaustion of available memory.

We can notice that F1 and A* are dominated methods since they do not

outperform any other method on either deviation or speed criterion. Other

reviewed methods correspond to a compromise between speed and accuracy.

The choice of a method is application-dependent, if accuracy is a matter then

F2 is the most appropriate choice. At the opposite, FBP and BP are the fastest

in our benchmark. In between, methods provide speed/accuracy trade-o�s.

The results reported in Table 4 corroborate the aforementioned observations.

Generally, our models appear to be quite accurate and outperform in this

way other methods from the literature. F2 outperforms the other methods on

all of the datasets in terms of the accuracy. The most spectacular improvement

is an average gain of 45% against BP, FBP and H. The average deviation gap

28

between F2 and F2LP is only 6% whereas it is 18% between F2 and BS, but

for BS, it is 5 times faster. F2LP is 12% more accurate than BS.

Finally, we can also state that F1LP and F2LP are not only approximately

7 times slower than BP, FBP and H but also approximately 40% more accurate.

Numerical results are detailed in Table 4.

6. Conclusions

In this paper, two exact BLP formulations of the GED problem have been

presented. The �rst formulation F1 is a didactic expression of the GED problem,

while F2 is a more re�ned program where variables and constraints have been

condensed to reduce the search space. Two lower bound approximations of the

GED (F1LP and F2LP) have been derived from the exact formulations, using

the continuous relaxation technique. Theoretically and practically speaking, we

showed that F2LP is faster to compute than F1LP. Formulations were evaluated

on publicly available databases. In all cases, F1 and F1LP were slower and less

accurate than F2 and F2LP, respectively. This result experimentally validated

F2 and the choice of reducing the number of variables and constraints of F1. The

experimental comparison with the state-of-the-art methods showed that, among

the exact methods that operate under a time constraint, F2 and JH were the

most accurate. When applicable, JH was generally faster, however, it faces

excessive memory needs when the sizes of the graphs grow. The experiments

also showed that the continuous relaxation of the domain constraints leads to

very accurate approximate methods. F2LP is the most accurate approximate

method of our benchmark while it holds a comparative runtime with BS. It is

however slower than BP, FBP and H. Finally, the last point is the generality of

our proposal. Our formulations are the most general in the sense that they can

handle di�erent types of attributed relational graphs: directed or undirected

graphs, simple graphs or multigraphs, with a combination of symbolic, numeric

and/or string attributes on the vertices and edges. F2 and F2LP were part of

the Graph Distance contest which was organized in the context of the ICPR

29

T
a
b
le
3
:
D
ev
ia
ti
o
n
a
n
d
ru
n
n
in
g
ti
m
e
o
f
a
ll

o
f
th
e
m
et
h
o
d
s.
O
p
t
::
P
er
ce
n
ta
g
e
o
f
in
st
a
n
ce
s
so
lv
ed

to
o
p
ti
m
a
li
ty
.

M
ea
n
d
ev
ia
ti
o
n
in

%
a
n
d

m
ea
n

ru
n
n
in
g
ti
m
e
in

m
il
li
se
co
n
d
s.

T
h
e
lo
w
er

th
e
b
et
te
r.
O
M

st
a
n
d
s
fo
r
O
u
t
o
f
M
em

o
ry
.
N
A

m
ea
n
s
n
o
t
a
p
p
li
ca
b
le
.
B
lu
e:

T
h
e
b
es
t
d
ev
ia
ti
o
n
s.

R
ed
:

T
h
e
b
es
t
ru
n
n
in
g
ti
m
es
.
In
b
o
ld
,
th
e
b
es
t
d
ev
ia
ti
o
n
s
a
m
o
n
g

th
e
a
p
p
ro
x
im

a
te

m
et
h
o
d
s.

F
1

F
2

A
*

J
H

B
P

B
S

H
F
B
P

F
1
L
P

F
2
L
P

O
p
t

D
e
v

T
im
e

O
p
t

D
e
v

T
im
e

O
p
t

D
e
v

T
im
e

O
p
t

D
e
v

T
im
e

D
e
v

T
im
e

D
e
v

T
im
e

D
e
v

T
im
e

D
e
v

T
im
e

D
e
v

T
im
e

D
e
v

T
im
e

P
A
H

5
1

1
9
.4

1
9
4
4
2
8

1
0
0

0
3
6
4
4
4

O
M

O
M

O
M

1
0
0

0
1
5
2
9

3
9
8

1
.4

9
9

1
3
9

7
9

1
3
7
0

0
3
1
.2

4
8
5
8

2
7
.
4

1
4
0
3

A
lk
a
n
e

1
0
0

0
1
7
6

1
0
0

0
3
9

1
0
0

0
8
7
2
0

1
0
0

0
1
6
5

1
3
3

0
.2

1
4

4
7
8

0
.4

1
1
1

0
4
2
.4

1
3
8

1
8
.7

3
8

L
E
T
T
E
R

H
IG
H

1
0
0

0
4
3

1
0
0

0
9

1
0
0

0
3

1
0
0

0
1
3

8
.9

0
4
.5

1
2
1
.5

0
2
4

0
0
.1

2
6

0
8

L
E
T
T
E
R

M
E
D

1
0
0

0
8

1
0
0

0
5

1
0
0

0
1

1
0
0

0
1
0

1
3
.2

0
2
.3

1
1
7
.2

0
2
7

0
0

8
0

5

L
E
T
T
E
R

L
O
W

1
0
0

0
8

1
0
0

0
5

1
0
0

0
1

1
0
0

0
1
0

9
.6

0
2
.5

1
2
1
.8

0
2
8

0
0

8
0

5

G
R
E
C
5

1
0
0

0
4

1
0
0

0
4

1
0
0

0
3

N
A

N
A

N
A

1
0

0
.1

2
5
.8

0
5
.9

0
0

4
0

4

G
R
E
C
1
0

1
0
0

0
8
1

1
0
0

0
3
4

9
0
.1

4
3
6
8
3
1

N
A

N
A

N
A

4
1

1
3
4

6
.8

2
4
.7

1
0
.2

8
1

0
.
1

3
4

G
R
E
C
1
5

1
0
0

0
3
1
9
2

1
0
0

0
5
4
7

4
2
.5

3
1
.1

1
7
2
8
8
6

N
A

N
A

N
A

8
.8

2
2
.1

2
4
5

1
2
.1

4
8
.8

2
1
.4

6
0
7

0
.
3

3
7
2

G
R
E
C
2
0

9
9
.5

0
1
2
3
4
7

1
0
0

0
9
8
1

O
M

O
M

O
M

N
A

N
A

N
A

5
4

3
.1

9
0
8

2
6
.9

8
5
.2

4
1
.9

1
1
7
1

0
.
3

6
4
2

M
U
T
A
1
0

1
0
0

0
1
2
8

1
0
0

0
5
0

O
M

O
M

O
M

1
0
0

0
8
2

2
4
.2

1
2
.1

6
5
0
.8

1
2
3

1
2

1
2
8

0
.
3

5
0

M
U
T
A
2
0

1
0
0

0
2
5
6
9
6

1
0
0

0
4
1
5
6

O
M

O
M

O
M

1
0
0

0
9
4
6

4
7
.1

1
1
3
.3

9
7

5
8
.3

2
3
9
.2

1
1
4
.9

1
4
7
2

6
.
2

1
0
2
4

M
U
T
A
3
0

1
6

4
.8

2
6
5
2
3
7

5
2

1
.4

1
8
5
8
3
0

O
M

O
M

O
M

8
6

0
7
2
5
3
4

7
9
.2

2
2
3
.6

5
1
9

6
8

4
6
6
.5

1
2
2
.6

8
0
1
0

1
4
.
9

4
8
9
1

M
U
T
A
4
0

1
1

1
0
.2

2
7
0
0
7
6

2
7

3
.4

2
3
6
7
8
6

O
M

O
M

O
M

6
8

0
1
3
3
9
7
4

8
2
.2

5
2
9
.3

1
6
2
0

6
8
.1

7
7
1
.8

5
2
3
.2

2
1
9
1
7

1
4
.
1

1
1
7
6
0

M
U
T
A
5
0

1
0

2
3
.2

2
7
0
4
6
1

1
1

8
.2

2
6
8
7
9
5

O
M

O
M

O
M

5
0

0
1
9
3
8
6
9

9
8
.2

8
4
4
.1

3
9
6
3

7
7
.8

1
2

8
7
.4

8
3
1
.6

4
3
9
4
5

1
8
.
8

2
2
6
3
0

M
U
T
A
6
0

1
0

2
3
.1

2
7
1
6
2
5

1
0

9
.2

2
7
0
1
6
9

O
M

O
M

O
M

1
9

0
2
4
9
6
8
5

9
2
.9

1
2

3
5
.8

8
1
9
8

7
4
.2

1
7

8
2
.2

1
1

3
1
.9

9
5
7
1
4

1
8
.
8

4
3
8
2
2

M
U
T
A
7
0

1
0

1
8
.8

2
7
3
1
2
4

1
0

7
.1

2
7
0
3
5
9

O
M

O
M

O
M

O
M

O
M

O
M

7
8
.9

1
8

2
7
.2

1
5
7
7
3

7
9
.9

2
3

7
3

1
7

3
5
.3

2
1
2
5
4
5

2
5
.
2

9
7
3
0
4

P
R
O
T
2
0

8
3
.1

0
8
0
0
7
0

9
4
.6

0
3
5
5
7
1

O
M

O
M

O
M

N
A

N
A

N
A

3
.2

1
3

1
.8

3
2
0
3

1
2
.7

2
5

1
2
.6

1
3

1
.2

4
7
5
6

0
.
8

2
1
7
9

P
R
O
T
3
0

3
7
.9

0
.1

2
1
7
3
3
0

7
4

0
1
3
0
1
3
4

O
M

O
M

O
M

N
A

N
A

N
A

5
.7

2
7

1
.8

1
7
7
4
3

1
9
.1

5
4

6
8
.6

2
8

1
1
1
6
9
5

0
.
7

5
6
7
2

P
R
O
T
4
0

1
0
.9

0
.2

2
7
3
1
5
9

2
1
.5

0
2
5
5
3
8
2

O
M

O
M

O
M

N
A

N
A

N
A

3
.5

4
9

2
5
0
7
3
7

1
3
.3

9
7

1
8
.1

5
2

1
.9

5
8
0
8
7

1
.
2

2
1
8
0
5

IL
P
IS
O
1
0

1
0
0

0
2
3

1
0
0

0
2
2

O
M

O
M

O
M

N
A

N
A

N
A

1
6
.6

2
1
2
.3

6
6

3
9
.8

2
1
7

2
0

2
2

0
2
1

IL
P
IS
O
2
5
9
1
.6

0
3
1
0
0
1

9
1

0
.2

3
5
4
1
0

O
M

O
M

O
M

N
A

N
A

N
A

3
3
.4

1
8

2
6
.1

1
1
0
5
3

5
4
.6

3
3

3
5
.3

1
9

7
1
4
3
6
7

4
.
5

4
2
5
9

IL
P
IS
O
5
0
5
6
.9

6
.6

1
3
8
8
8
7

5
5
.5

2
.7

1
4
1
7
5
0

O
M

O
M

O
M

N
A

N
A

N
A

2
4
.1

2
9
5

8
0
.1

2
6
0
6
6
5

5
9
.4

5
5
7

2
5
.8

3
1
0

8
.4

1
2
5
9
3
8

9
.
4

1
1
4
5
9
8

30

T
a
b
le
4
:
R
el
a
ti
v
e
co
m
p
a
ri
so
n
o
f
a
ll

o
f
th
e
m
et
h
o
d
s
a
cc
o
rd
in
g

to
th
ei
r
ru
n
n
in
g
ti
m
e
a
n
d
a
cc
u
ra
cy
.
D
e
v
g
a
p
:

M
ea
n
d
ev
ia
ti
o
n
g
a
p
b
et
w
ee
n

th
e

m
et
h
o
d
s

in
te
rm

s
o
f
th
e
p
er
ce
n
ta
g
e
ov
er

a
ll
o
f
th
e
d
a
ta
b
a
se
s.

T
h
e
h
ig
h
er

th
e
va
lu
e
is
,
th
e
b
et
te
r

th
e
o
u
tc
o
m
e.
T
im
e
r
a
t
io
:
M
ea
n
ti
m
e
ra
ti
o

b
et
w
ee
n

th
e
m
et
h
o
d
s
ov
er

a
ll

o
f
th
e
d
a
ta
b
a
se
s.

T
h
e
se
co
n
d
li
n
e
is
,
fo
r
ex
a
m
p
le
,
th
e
ti
m
e
o
f
m
et
h
o
d
x
o
n
F
2
.
T
h
e
lo
w
er

th
e
va
lu
e
is
,
th
e
b
et
te
r

th
e
o
u
tc
o
m
e.

B
lu
e:

C
o
m
p
a
ri
so
n
w
it
h
th
e
b
es
t
d
ev
ia
ti
o
n
s.

R
ed
:
C
o
m
p
a
ri
so
n
w
it
h
th
e
b
es
t
ru
n
n
in
g
ti
m
e.

F
1

F
2

B
P

B
S

H
F
B
P

F
1
L
P

F
2
L
P

D
e
v

g
a
p

T
im
e

ra
ti
o

D
e
v

g
a
p

T
im
e

ra
ti
o

D
e
v

g
a
p

T
im
e

ra
ti
o

D
e
v

g
a
p

T
im
e

ra
ti
o

D
e
v

g
a
p

T
im
e

ra
ti
o

D
e
v

g
a
p

T
im
e

ra
ti
o

D
e
v

g
a
p

T
im
e

ra
ti
o

D
e
v

g
a
p

T
im
e

ra
ti
o

F
1

0
1

-3
.3

1
.2

4
8
.4

5
0
6
3
.3

1
4
.7

6
.2

3
8
.2

2
7
3
9
.7

5
0

4
8
9
7
.1

6
.9

3
.8

2
.6

7

F
2

3
.3

0
.8

0
1

5
1
.7

4
0
7
4
.2

1
8

5
4
1
.5

2
2
0
4
.5

5
3
.3

3
9
4
0
.4

1
0
.2

3
.1

5
.9

5
.6

B
P

-4
8
.4

0
-5
1
.7

0
0

1
-3
3
.7

0
-1
0
.2

0
.5

1
.6

1
-4
1
.5

0
-4
5
.8

0

B
S

-1
4
.7

0
.2

-1
8

0
.2

3
3
.7

8
1
5
.9

0
1

2
3
.5

4
4
1
.5

3
5
.3

7
8
9
.1

-7
.8

0
.6

-1
2
.1

1
.1

H
-3
8
.2

0
-4
1
.5

0
1
0
.2

1
.8

-2
3
.5

0
0

1
1
1
.8

1
.8

-3
1
.3

0
-3
5
.6

0

F
B
P

-5
0

0
-5
3
.3

0
-1
.6

1
-3
5
.3

0
-1
1
.8

0
.6

0
1

-4
3
.1

0
-4
7
.4

0

F
1
L
P

-6
.9

0
.3

-1
0
.2

0
.3

4
1
.5

1
3
1
7
.6

7
.8

1
.6

3
1
.3

7
1
2
.9

4
3
.1

1
2
7
4
.3

0
1

-4
.3

1
.8

F
2
L
P

-2
.6

0
.1

-5
.9

0
.2

4
5
.8

7
2
3
.7

1
2
.1

0
.9

3
5
.6

3
9
1
.6

4
7
.4

6
9
9
.9

4
.3

0
.5

0
1

31

2016 conference 4. In perspective, quadratic programming solvers are obtaining

more and more e�ciency and we want to investigate the de�nition of binary

quadratic programming formulations of the GED problem. Finally, another

interesting task for future research will be to use lower and upper bounds to

build an optimized nearest neighbor search.

References

[1] K. Riesen, M. Neuhaus, H. Bunke, Graph Embedding in Vector Spaces by

Means of Prototype Selection, in: Proc. of the 6th IAPR Int. Workshop on

Graph-based Repr. in Pattern Recogn., 383�393, 2007.

[2] H. Bunke, K. Riesen, Towards the uni�cation of structural and statistical

pattern recognition, Pattern Recogn. Lett. 33 (7) (2012) 811�825.

[3] S. Kramer, L. D. Raedt, Feature Construction with Version Spaces for

Biochemical Applications, in: Proc. of the 18th ICML, 258�265, 2001.

[4] N. Sidère, P. Héroux, J.-Y. Ramel, Vector Representation of Graphs: Ap-

plication to the Classi�cation of Symbols and Letters, in: Proc. of the Int.

Conf. on Doc. Anal. and Recogn., 681�685, 2009.

[5] P. Ren, R. Wilson, E. Hancock, Graph Characterization via Ihara Coe�-

cients, IEEE Trans. on Neural Networks 22 (2) (2011) 233�245.

[6] J. Shi, J. Malik, Normalized Cuts and Image Segmentation, IEEE Trans.

on PAMI 22 (8) (2000) 888�905.

[7] K. Riesen, H. Bunke, Graph Classi�cation and Clustering Based on Vector

Space Embedding, World Scienti�c Publishing Co., Inc., 2010.

[8] T. Gärtner, J. Lloyd, P. Flach, Kernels for Structured Data, in: Inductive

Logic Programming, vol. 2583 of LNCS, Springer, 66�83, 2003.

4https://gdc2016.greyc.fr/

32

[9] P. Foggia, M. Vento, Graph Embedding for Pattern Recognition, in: Recog-

nizing Patterns in Signals, Speech, Images and Videos, vol. 6388 of LNCS,

Springer, 75�82, 2010.

[10] D. Raviv, R. Kimmel, A. M. Bruckstein, Graph Isomorphisms and Auto-

morphisms via Spectral Signatures, IEEE Trans. on PAMI 35 (8) (2013)

1985�1993.

[11] S. Umeyama, An Eigendecomposition Approach to Weighted Graph Match-

ing Problems, IEEE Trans. on PAMI 10 (5) (1988) 695�703.

[12] H. Bunke, G. Allermann, Inexact Graph Matching for Structural Pattern

Recognition, Pattern Recogn. Lett. 1 (4) (1983) 245�253.

[13] H. Bunke, P. Dickinson, M. Kraetzl, M. Neuhaus, M. Stettler, Matching

of Hypergraphs � Algorithms, Applications, and Experiments, in: Ap-

plied Pattern Recognition, vol. 91 of Studies in Computational Intelligence,

Springer, 131�154, 2008.

[14] O. Kostakis, Classy: fast clustering streams of call-graphs, Data Mining

and Knowledge Discovery 28 (5) (2014) 1554�1585.

[15] B. Gaüzère, L. Brun, D. Villemin, Two new graphs kernels in chemoinfor-

matics, Pattern Recogn. Lett. 33 (15) (2012) 2038 � 2047.

[16] A. Fischer, H. Bunke, Character prototype selection for handwriting recog-

nition in historical documents, in: Proc. of the 19th Europ. Signal Process-

ing Conference, 1435�1439, 2011.

[17] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, L. Zhou, Comparing

Stars: On Approximating Graph Edit Distance., PVLDB 2 (1) (2009)

25�36, URL http://dblp.uni-trier.de/db/journals/pvldb/pvldb2.

html#ZengTWFZ09.

[18] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman & Co., NY, USA, 1979.

33

http://dblp.uni-trier.de/db/journals/pvldb/pvldb2.html#ZengTWFZ09
http://dblp.uni-trier.de/db/journals/pvldb/pvldb2.html#ZengTWFZ09

[19] K. Riesen, S. Fankhauser, H. Bunke, Speeding Up Graph Edit Distance

Computation with a Bipartite Heuristic, in: Mining and Learning with

Graphs, MLG 2007 Proceedings, 2007.

[20] A. Fischer, R. Plamondon, Y. Savaria, K. Riesen, H. Bunke, A Hausdor�

Heuristic for E�cient Computation of Graph Edit Distance, in: Proc. of

the Joint IAPR Int. Workshops, S+SSPR 2014, 83�92, 2014.

[21] A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, H. Bunke, Approximation of

graph edit distance based on Hausdor� matching, Pattern Recogn. 48 (2)

(2015) 331 � 343.

[22] S. Fankhauser, K. Riesen, H. Bunke, P. J. Dickinson, Suboptimal Graph

Isomorphism using bipartite Matching, IJPRAI 26 (6).

[23] K. Riesen, H. Bunke, Approximate graph edit distance computation by

means of bipartite graph matching, Image Vision Comput. 27 (7) (2009)

950�959.

[24] M. Neuhaus, K. Riesen, H. Bunke, Fast Suboptimal Algorithms for the

Computation of Graph Edit Distance, in: Proc. of the Joint IAPR Inter-

national Workshops, SSPR & SPR 2006, 163�172, 2006.

[25] R. Myers, R. C. Wilson, E. R. Hancock, Bayesian Graph Edit Distance,

IEEE Trans. on PAMI 22 (6) (2000) 628�635.

[26] R. Raveaux, J.-C. Burie, J.-M. Ogier, A graph matching method and a

graph matching distance based on subgraph assignments, Pattern Recogn.

Lett. 31 (5) (2010) 394�406.

[27] D. Justice, A. Hero, A Binary Linear Programming Formulation of the

Graph Edit Distance, IEEE Trans. on PAMI 28 (8) (2006) 1200�1214.

[28] P. Héroux, P. Le Bodic, S. Adam, Datasets for the Evaluation of

Substitution-Tolerant Subgraph Isomorphism, in: Graphics Recognition.

Current Trends and Challenges, LNCS, Springer, 240�251, 2014.

34

[29] K. Riesen, H. Bunke, IAM Graph Database Repository for Graph Based

Pattern Recognition and Machine Learning, in: Proc. of the Joint IAPR

Workshops S+SSPR, vol. 5342 of LNCS, Springer, 287�297, 2008.

[30] IAPR TC 15, GREYC Datasets, URL https://iapr-tc15.greyc.fr/

links.html, 2013.

[31] H. Bunke, On a relation between graph edit distance and maximum com-

mon subgraph, Pattern Recogn. Lett. 18 (8) (1997) 689�694.

[32] H. Bunke, K. Shearer, A Graph Distance Metric Based on the Maximal

Common Subgraph, Pattern Recogn. Lett. 19 (3-4) (1998) 255�259.

[33] M. Neuhaus, H. Bunke, Bridging the Gap between Graph Edit Distance

and Kernel Machines, vol. 68 of Series in Machine Perception and Arti�cial

Intelligence, WorldScienti�c, 2007.

[34] X. Cortés, F. Serratosa, Learning graph-matching edit-costs based on the

optimality of the oracle's node correspondences, Pattern Recogn. Lett. 56

(2015) 22�29.

[35] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, A. J. Smola, Learning

Graph Matching, IEEE Trans. on PAMI 31 (6) (2009) 1048�1058.

[36] X. Gao, B. Xiao, D. Tao, X. Li, A Survey of Graph Edit Distance, Pattern

Anal. Appl. 13 (1) (2010) 113�129.

[37] K. Riesen, Structural Pattern Recognition with Graph Edit Distance - Ap-

proximation Algorithms and Applications, Advances in Comp. Vis. and

Pattern Recogn., Springer, 2015.

[38] P. Hart, N. Nilsson, B. Raphael, A Formal Basis for the Heuristic De-

termination of Minimum Cost Paths, IEEE Trans. on SMC 4 (2) (1968)

100�107.

35

https://iapr-tc15.greyc.fr/links.html
https://iapr-tc15.greyc.fr/links.html

[39] H. A. Almohamad, S. O. Du�uaa, A Linear Programming Approach for the

Weighted Graph Matching Problem, IEEE Trans. on PAMI 15 (5) (1993)

522�525.

[40] J. Munkres, Algorithms for the Assignment and Transportation Problems,

J. of the Society of Industrial and Applied Mathematics 5 (1) (1957) 32�38.

[41] K. Riesen, H. Bunke, Improving bipartite graph edit distance approxima-

tion using various search strategies, Pattern Recogn. 48 (4) (2015) 1349�

1363.

[42] L. A. Wolsey, Integer programming, Wiley-Interscience, NY, USA, 1998.

[43] R. Saigal, Linear Programming: A Modern Integrated Analysis, Kluwer

Academic Publishers, 1995.

[44] F. Serratosa, Fast computation of Bipartite graph matching, Pattern

Recogn. Lett. 45 (2014) 244�250.

[45] F. Serratosa, Computation of graph edit distance: Reasoning about opti-

mality and speed-up, Image Vision Comp. 40 (2015) 38�48.

36

	Introduction
	Problem Statement
	Related Works
	Exact approaches
	Approximations

	 Graph Edit Distance Using Binary Linear Programming
	Modelling the GED problem as a BLP
	Variable and cost functions definitions
	Objective function
	Constraints
	Straightforward formulation F1

	Reducing the size of the formulation
	Reducing the number of variables
	Reducing the number of constraints
	Simplified formulation F2

	Extension to undirected graphs
	Comparing the solving of F1 and F2 and obtaining lower bounds

	Experiments
	Studied methods
	Datasets
	Experimental protocol
	Accuracy metrics
	Speed metrics
	Experimental settings

	Results
	Comparing exact methods
	Comparing approximate methods
	Synthesis

	 Conclusions

