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Abstract 

 

The goal of functional genomics is to understand the relationship be-

tween whole genomes and phenotypes through a dynamic approach. 

It requires high throughput technologies such as microarrays and 

data analysis. The power of this approach allowed to study complex 

biological functions as well as diseases. In this chapter, we introduce 

functional genomics and describe the statistical methods that are 

used to find differentially expressed genes. We analyze a large num-

ber of data sets produced on a complex disease, namely Down syn-

drome, in different models. We show that, whatever the model, 

genes that are in three copies are globally overexpressed. However, 

we failed to identify a set of two-copy genes that would be dysregu-

lated in all studies. It either suggests that studies are incomplete, or 

that this set of genes does not exist and that overexpression of the 

three-copy genes impacts on the whole transcriptome in a “stochas-

tic” way. 
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1.1 Introduction 

Functional genomics has been or is being applied to complex dis-

eases in the hope of finding molecular networks that are altered, as 

well as gene targets for treatment. The experiments were initiated as 

soon as tools were available, and this field of research has exploded 

with the commercialization of DNA microarrays and their relative 

affordability. Since the first development of DNA microarrays more 

than ten years ago (Schena et al, 1995), the technology has improved 

in many aspects. Genome annotations are being updated and the 

probes associated to individual genes have been optimized for their 

selectivity and sensitivity. Although probe collections covering all 

the genes corresponding to various genomes are not fully optimized 

(Golfier et al, 2009) the data are improving and becoming consistent 

for powerful statistical analysis. The initial studies aiming at defin-

ing lists of differentially expressed genes have been disappointing 

and revealed that data analysis had to be extended using other tools 

than statistical tests. Many clustering methods and network analysis 

have been applied since. In parallel, gene ontology categorization 

has allowed a more functional view on the list of differentially ex-

pressed genes. Gene ontology now groups 28 154 terms with 19 913 

for biological_process, 2 775 for cellular_component and 8 908 for 

molecular_function (www.geneontology.org 11/30/2010). 

Nowadays, researchers who envision gene expression studies have 

always the same question in mind which is: what are the genes dif-

ferentially expressed between various samples? But they want to 
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know the answer beyond the list, meaning that they want to know 

what are the functions of these genes, and if they belong to a particu-

lar network or pathway. Knowing this pathway will eventually give 

them the key for tuning it. Of course, the first question to ask is: has 

it been done, published and deposited in public databases (GEO 

www.ncbi.nlm.nih.gov/geo/ or Arrayexpress 

www.ebi.ac.uk/microarray-as/ae/)?  If the answer is yes, there are 

data available on the subject; one should then plan to produce a dif-

ferent set of data, keeping in mind that this new set will need to be 

integrated with data sets available for the ultimate meta-analysis. It 

is just not possible to ignore other data sets since the power of analy-

sis will be increased along with the size of samples. Then, of course, 

data need to be comparable, meaning preferably performed on the 

same type of microarray and possibly on the same platform. If not, 

then microarray annotation becomes a real issue that will h ave to be 

improved in the future. Isn’t it surprising that with 497 398 samples 

(19 918 series) in GEO the number of meta-analyses is so low? 

There are nowadays 44 datasets with 100 to 200 samples, 22 with 

1 000 to 7 000 samples but none with more than 7 000 samples. 

 

1.1.1 Alzheimer’s disease (AD) 

Let us take the example of AD, a neurodegenerative disease which 

affects 25 millions of individuals worldwide, and which is becoming 

a real societal problem. Many gene profiling studies have been per-

formed on AD patient samples (brain, peripheral cells) but no coher-
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ent picture of gene expression regulation in AD was obtained (Maes 

et al, 2007) (Nagasaka et al, 2005) (Blalock et al, 2004) (Emilsson 

et al, 2006) (Lu et al, 2004). One could argue that small sample size 

together with manipulating human tissues with artifacts associated to 

post-mortem delay have minimized the power of analysis because of 

high variability. Also analysis of brain samples with very heteroge-

neous cell composition brings another level of variability. One way 

around would be to analyze gene expression at the single cell level. 

Such analyses are still under development and will bring answers to 

this major problem (Bontoux et al, 2008). It might be though that the 

control of cellular function has both deterministic and stochastic 

elements: complex regulatory networks define stable states that 

drive individual cells, whereas stochastic fluctuations in gene ex-

pression ensure transitions and coherence at the population level 

(Macarthur et al, 2009). Stochastic “noise” arises from random fluc-

tuations within the cell and is an unavoidable aspect of life at the 

single-cell level. Evidence is accumulating that this noise crucially 

influences cellular auto-regulatory circuits and can “flip” genetic 

switches to drive probabilistic fate decisions (Singh and Weinberger, 

2009). Stochastic noise in gene expression propagates through ac-

tive, but not inactive, regulatory links and it was recently shown that 

extrinsic noise sources generate correlations even without direct 

regulatory links (Dunlop et al, 2008). In bacteria, it was shown that 

noise in expression of specific genes selects cells for competence, 

and experimental reduction of this noise decreases the number of 

competent cells (Maamar et al, 2007). This stochastic noise could 
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have an impact on cell fate either during development but also dur-

ing disease progression. It is assumed that during development, cells 

acquire their fate by virtue of their lineage or their proximity to an 

inductive signal from another cell. However, cells can choose one or 

another pathway of differentiation stochastically, without apparent 

regard to environment or history, and this stochastic character could 

be critical for the maintenance of species (Losick and Desplan, 

2008). Although these aspects have been studied in bacteria and 

yeasts, it is still particularly difficult to explore in multicellular or-

ganisms and in diseases. 

The experimental design applied to complex human diseases has fo-

cused on gene expression regulation in tissues or cultured cells, thus 

excluding the single cell resolution. Although stochastic gene ex-

pression was mentioned, it is not possible to differentiate single cell 

level noise from tissue complexity, cellular heterogeneity and inter-

individual variability. 

Recently, with the use of systems biology approaches, two studies 

have revealed new interesting molecular networks related to AD. 

The first study applied weighted gene coexpression network analysis 

(WGCNA) to microarray datasets analyzing brain samples (the CA1 

region of the hippocampus) from AD patients and comparing to 

brain samples (frontal lobe) from normal elderly people (Miller et al, 

2008). This analysis produced modules of co expressed genes that 

are functionally related with some relevant to disease progression 

and others conserved between AD and normal aging. In the second 

study, gene profiling of laser microdissected samples from the en-
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torhinal cortex were analyzed slightly differently. Modules of highly 

correlated genes were constructed and among these genes regulatory 

cis elements were identified. New links have been identified be-

tween cardiovascular diseases, AD and diabetes (Ray et al, 2008). 

Genome wide association studies (GWAS) have recently revealed 

the power of analyzing a very large number of samples (>1000) 

(Harold et al, 2009; Lambert et al, 2009). Although getting genomic 

DNA samples is far much easier than getting brain samples, one 

would imagine that larger sample gene profiling datasets with less 

heterogeneous samples will improve the readout of the analysis.  

 

1.1.2 Down syndrome (DS) 

We have been interested in another complex disease, namely Down 

syndrome. DS results from the presence in three copies of human 

chromosome 21, the smallest human autosome containing about 350 

known protein-coding genes (Antonarakis et al, 2004; Epstein, 

1990; Lejeune et al, 1959) The mechanisms by which this ane-

uploidy produces the complex and variable phenotype observed in 

DS patients are still under discussion. The use of large scale gene 

expression methods such as microarrays were expected to shed light 

on which genes (within or outside chromosome 21) contribute to the 

DS phenotype as well as to the phenotypic variability. For the genes 

on chromosome 21, all studies have con!rmed a general increase of 

transcription following the chromosomal imbalance, the “primary 

gene dosage effect”. RNA samples prepared from cells or tissues of 
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DS patients or mouse models showed a global over-expression of 

the three-copy genes (Ait Yahya-Graison et al, 2007; Amano et al, 

2004; Dauphinot et al, 2005; FitzPatrick et al, 2002; Giannone et al, 

2004; Lockstone et al, 2007; Mao et al, 2005; Mao et al, 2003; 

Potier et al, 2006; Saran et al, 2003). However, even if the mean 

over-expression we and others reported to be close to the expected 

value of 1.5, recent studies in DS cell lines have reported that about 

70% of the three-copy genes were signi!cantly below the 1.5 ratio. 

In these particular cell lines at least, a large proportion of the chro-

mosome 21 transcripts were compensated for the primary gene dos-

age effect (Ait Yahya-Graison et al, 2007; Prandini et al, 2007).  

As for non-chromosome 21 genes, results are less consistent. The 

aneuploidy of an entire chromosome could affect the expression of 

either a limited number of genes, or a large number in a more ran-

dom and extensive way (Mao et al, 2005; Saran et al, 2003). Con-

versely classification of samples on the basis of their whole tran-

scriptome has not been applied systematically in the published gene 

expression studies of DS. Rather it was unfortunately wrongly ap-

plied such as in Slonim et al. (Slonim et al, 2009). In this study they 

conclude to a widespread differential expression between trisomic 

and euploid samples based on clustering of genes differentially ex-

pressed between trisomic and euploid, excluding the chromosome 21 

genes. It seems obvious that differentially expressed genes between 

two conditions would be able to differentiate the two conditions.  

Nevertheless this question regarding the regulation of gene expres-

sion for non-chromosome 21 genes is still debated, and more com-
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prehensive studies assessing the variability among samples, tissues 

and development stages are needed.  

We have designed several large scale gene expression studies in 

which we could measure the effects of trisomy 21 on a large number 

of samples in tissues or cells that are affected in DS (Dauphinot et 

al, 2005; Laffaire et al, 2009; Moldrich et al, 2009).  All were per-

formed with the Ts1Cje mouse model of DS which is a segmental 

trisomy of mouse chromosome 16 (MMU16) with many genes 

orthologous to human chromosome 21 (HSA21) present in three 

copies (about 95). This mouse model has the advantage of being 

available as large colonies of mice on B6C3SnF1/Orl mixed genetic 

background and rapidly screened (Sago et al, 2000). Experiments 

were designed in order to correlate gene expression changes with the 

phenotype observed. Two data sets focused on cerebellum since 

adult Ts1Cje mice show a reduction in cerebellar volume that paral-

lel the observations in DS patients and in another mouse model of 

DS (Ts65Dn mice) (Baxter et al, 2000; Olson et al, 2004). The re-

duced size of the cerebellum and the reduced cerebellar granule cell 

number in Ts65Dn adults originate around birth because of a defect 

in granule cell precursor proliferation (Roper et al, 2006). In our 

studies, three early postnatal time points that are crucial for cerebel-

lar development were investigated which could provide a read-out of 

genes involved in cerebellar hypoplasia in DS. These three time 

points correspond to birth (P0) and postnatal days 15 (P15) and 30 

(P30). During the P0-P10 time period granule cells proliferate and 

migrate from the external to the internal granule cell layer and Purk-
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inje cells start differentiating and growing their highly dense den-

dritic tree. We quanti!ed the proliferation of granule cell precursors 

on !xed cerebellum slices of Ts1Cje and euploid mice at P0, P3 and 

P7 using immunohistochemistry and histology. A signi!cant 30% 

decrease of their mitotic index was observed at P0 but not at P3 and 

P7, in agreement with the results obtained in Ts65Dn mice (Roper et 

al, 2006). Finally and in order to !nd gene expression variations in 

cerebellar regions rich in granule cell precursors, external granule 

cell layers of newborn Ts1Cje and euploid mice were dissected and 

analyzed on microarrays.  

We also integrated data sets that contained a number of samples that 

was sufficient for statistical analysis (n " 4). These included the 

studies of Mao et al. and Saran et al. from 2003 (Mao et al, 2003; 

Saran et al, 2003). The first dataset contains gene expression profiles 

of human fetal cortex and cultured astrocytes from 4 Down syn-

drome cases and 4 controls. The second study produced gene ex-

pression profiles of the adult cerebellum from the Down syndrome 

mouse model Ts65Dn.  

We included in the meta analysis the data set from Amano et al. 

2004 from whole brain of newborn Ts1Cje mice (Amano et al, 

2004), the one from 2007 of Lockstone et al. (Lockstone et al, 2007) 

and Pevsner et al. (unpublished GEO GSE9762) on adult cortex and 

cultured fibroblasts respectively, from DS patients and controls. Fi-

nally, we failed to analyze the data set from Slonim et al. 2009 on 

uncultured amniotic fluid supernatants from DS and euploid fetuses 

(Slonim et al, 2009). Indeed, from all the samples published, less 
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than 1000 genes were expressed in all experiments, which were not 

representative enough for the analysis to be meaningful. 

 

1.2 Elements of microarray statistical analysis 

The aim of this section is not to propose an exhaustive panorama of 

the existing methods for the analysis of microarray data, but rather 

to give the necessary and sufficient technical elements needed in or-

der to understand and to reproduce the statistical treatments that we 

or the authors we cite have applied to the various data sets surveyed 

in this chapter. 

 

1.2.1 Data normalization 

In addition to the variability of interest that is due to the difference 

between diseased (here DS) and normal tissue, observed expression 

levels are also subject to the variability introduced during sample 

preparation, the manufacture and the processing of the arrays (label-

ing, hybridization and scan). Even if some of this unwanted variabil-

ity can be controlled using appropriate experimental design and pro-

cedures, for example by having all experiments performed at a 

single time point by a single operator, some of it can not be con-

trolled, but still needs to be corrected. The most famous of these 

sources is perhaps the dye bias for cDNA microarray experiments, 

where the efficiency, heat and light sensitivities differ for Cy3 and 

Cy5, resulting in a systematically lower signal for Cy3. For cDNA 

microarrays, the normalization procedure proposed in (Dudoit S, 
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2002) was shown to be efficient. It is based on Cleveland’s robust 

locally weighted regression for smoothing scatterplots (Cleveland, 

1979), and consists in fitting a lowess curve to the MA plot of log in-

tensities1 of the red and green labels and considering the residuals as 

the normalized log ratios. 

This approach is not directly applicable to single color arrays, such 

as the Affymetrix or Illumina arrays considered in this chapter. 

However, contrarily to the current perception that the lowess nor-

malization is only suited for normalizing two single color arrays at a 

time, (Sasik CH, 2004) showed that lowess can indeed be applied 

across n > 2 arrays, assuming that most genes expressions do not 

change notably across the n experiments. 

In practice, multiple lowess proves quite similar to quantile normali-

zation, which is a much lighter procedure. The principle of quantile 

normalization is to make the distribution of the probe intensities 

equal to a reference distribution for each of the n arrays. This refer-

ence distribution is the mean distribution of the n arrays, computed 

by sorting all p probe intensities of each array in increasing order, 

and computing the i
th
 reference intensity value as the mean of the i

th
 

intensity values of the n arrays. Boldstad et al. showed the efficiency 

of the method, which is commonly used for the normalization of Af-

fymetrix data (Bolstad et al, 2003). 

                                                             
1 Transforming expression data to a log scale (any base) reduces the asymmetry 

of the distribution of the intensities and homogenizes their variance. Here, probe 

intensities are systematically log2 values. 
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Let us illustrate this efficiency with an example exhibiting a known 

undesirable effect. Gene expression was measured twice on cell 

lines from 12 DS patients at a two month interval on Illumina chips 

with 48 701 probes, the labeling being the same for the two hybridi-

zations. Figure 1a shows the raw intensity values for the 24 arrays, 

those of the first hybridization in black, those of the second in grey: 

the two groups differ visibly. One also notices differences among the 

first and second hybridization, the arrays being located on two dif-

ferent Illumina chips (there were up to 6 arrays on the considered Il-

lumina chips). Figure 1b shows the mean distribution used for quan-

tile normalization. 

 

 

Figure 1.1 a) Distributions of the probe intensities for the 12 DS pa-

tients in black for the first hybridization, and in grey  for the second 

one. 

 

In order to demonstrate the efficiency of quantile normalization, we 

performed a PCA (see next section for further technical details about 

PCA) of the raw and of the quantile normalized data. Both are 
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shown in Figure 1.2. Whereas the arrays are grouped according to 

the hybridization when considering the raw data (Figure 1.2a), they 

are clearly grouped two by two when using the normalized data 

(Figure 1.2b), i.e. two arrays corresponding to the same tissue are 

now very close. Furthermore, the markers used for the arrays corre-

spond to the chip they belong to. With the raw data, a chip effect can 

be noted (for arrays 1, 2 and 3 for example), which lessens consid-

erably after normalization. 

 

 

Figure 1.2 PCA of the 24 arrays along the first two principal axes, 

each sample being originally represented by the intensities of 48 701 

probes. The arrays that where first hybridized are shown in black, 

the second in grey. Identical markers denote arrays located on the 

same Illumina chip. 

 

This illustration using PCA leads us to the second part of the analy-

sis, that of data visualization prior to differential analysis. 

 

1.2.2 Dimensionality reduction and data visualization 

The result of a microarray experiment involving n arrays with p 

probes presents itself as a nxp matrix of – now normalized – intensi-
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ties, which can be viewed as the representation of n tissues by the in-

tensities of their p genes or probes (typically hundreds or thousands), 

or conversely, as the representation of the p probes by their expres-

sion in n tissues (typically tens or even less). In this chapter, we will 

focus on the first view, which raises the problem of visualizing ob-

jects in a high dimension space, see McLachlan et al. for an exhaus-

tive analysis of both views (McLachlan GJ, 2004). 

A common way mean of reducing dimensionality is to carry out a 

principal component analysis (PCA): the principle of PCA is pre-

cisely to project multidimensional data to a lower dimension space 

retaining as much as possible of the variability of the data. 

A first purpose of such a PCA prior to differential analysis is to de-

tect outliers and possible biases, as well as to validate their correc-

tion by a proper normalization: in the previous example, PCA 

showed the reduction of the effect of having different hybridizations 

by quantile normalization. 

A second goal may be to exhibit groups of tissues, especially ac-

cording to the known differences between them, such as normal and 

DS tissues. In this context, we must insist that PCA is an unsuper-

vised procedure, whose only property is that the projection in the d-

dimension space generated by the d first principal axes has the high-

est variance among all possible projections in a d-dimension space. 

The direction of maximum variance being composed of variance 

within the groups and variance between the groups, the first principal 

components need not necessarily reflect the direction in the probe 

space that is best for revealing the group structure of the tissues. 
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However, conversely, if PCA indeed reveals clusters, it implies a 

large variance between the groups, i.e. the presence of many differ-

entially expressed probes. In this chapter, whose main object is the 

characterization of DS versus normal tissues, we will systematically 

present three different PCA of the data: the PCA on all transcripts,  

the PCA on the HSA21 chromosome (or the equivalent part of 

MMU16 chromosome in three copies in the case of mouse models) 

transcripts, and the PCA on the remaining euploid transcripts. Be-

cause of the gene dosage effect, PCA on the three-copy transcripts 

systematically separates normal from DS tissues. If PCA without the 

three-copy transcripts does, it means that the whole transcriptome is 

affected by DS. This might be a useful and complementary informa-

tion to differential analysis, especially in the case of less powerful 

experiments (i.e. with too few samples) where only a few genes can 

be determined as significantly differentially expressed. We could 

have completed the PCA with a cluster analysis, however for all the 

data sets presented in the next section, hierarchical clustering never 

exhibits two separate clusters of DS and euploid samples when PCA 

does not (while the opposite case often appears). 

Now, a few technical details need to be clarified. The lower dimen-

sional space used for the PCA projection is the space generated by 

the eigenvectors of the feature (probe) correlation matrix corre-

sponding to its largest eigenvalues, called principal axes, see for ex-

ample Johnson & Wichern (DW, 2002). In many applications, it 

happens that some features have completely different scalings. For 

example, one of the features may have been measured in meters and 
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another one, by design or accident, in micrometers. Since eigenval-

ues are scale dependent, it might be appropriate in such cases to 

rescale all features to the same scale, which amounts to use the cor-

relation matrix of the features, instead of their covariance matrix. In 

the case of gene expression, rescaling leads to give low- or unex-

pressed genes (the variance of which corresponds to noise) the same 

importance as highly expressed genes, which is indeed not desirable. 

 

 

Figure 1.3 Same as in Figure 1.2, except that the PCA is performed 

on the correlation matrix (i.e. with rescaled probe intensities). 

 

To illustrate this, Figure 1.3 shows the two PCA of the 12 DS tissues 

hybridized twice, this time with rescaled intensities. On the raw data, 

the main variability being due to the different hybridizations, the 

projection is quite similar as when performed on the un-rescaled 

data. But on the normalized data, where this effect has been re-

moved, we see that we have lost the close neighborhood of the cou-

ples of arrays corresponding to the same tissue. Thus, all PCA pre-

sented in this chapter are performed on the normalized, un-rescaled 
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probe intensities. On PCA figures, the percentage indicated in paren-

theses in a principal axis label corresponds to the proportion of the 

variance explained by this axis. 

Finally, whatever the platform, intensity values are usually provided 

with “calls” (present, absent, marginal) and/or detection p-values. 

The PCA shown in the next section have been performed on the 

transcripts considered present or with expression p-values lower 

than 5% or 1% for all n arrays (when the p–values were not avail-

able, we chose a cutoff on the probe intensity so as to obtain the 

same proportion of expressed transcripts). For our example, 10 626 

transcripts are considered present on all arrays with a threshold of 

5% on the detection p-value, and the PCA on these 10 626 tran-

scripts is shown on Figure 1.4. The benefit of removing the non-

expressed genes is especially noticeable on the raw data, where the 

couples are now visible (though still much less than on the normal-

ized data). 

 

 

Figure 1.4 Same as in Figure 1.2, but only for the 10 626 transcripts 

considered present on all 24 arrays. 
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1.2.3 Differential analysis at the gene level 

The purpose of differential analysis at the gene (or transcript) level 

is to identify genes whose expression level differs from a condition 

to another, based on statistical hypothesis testing. Almost all ex-

periments analyzed in this chapter involve two groups of tissues, 

normal and DS tissues, usually unpaired. Thus, the traditional t-test 

is relevant for our purpose, which reformulates the question of dif-

ferential expression of gene i in terms of a null hypothesis H0i  

“there is no difference of mean expression for the transcript i be-

tween the normal and the DS tissues”. Student’s t-test is indeed the 

test that was used in almost all reviewed papers, and that we used for 

the experiments for which no analysis was published. Once the t-

statistic is computed, the classical decision rule to accept or reject 

H0i consisting in controlling the type I error probability can be ap-

plied for declaring each gene differentially expressed (DE) or not. 

However, the specificity of microarray differential analysis lies in 

the large number of tests to be performed: as many as probes on the 

array, or at least, as expressed transcripts. The question of differen-

tial expression must hence be restated as a multiple testing problem. 

The first attempts to solve this problem aimed at controlling the 

Family Wise Error Rate (FWER), that is the probability to have at 

least one false positive, and the procedures of Bonferroni and Sidak 

are the most widely used to this end. An alternative approach has 

been proposed in Benjamini & Hochberg, based on the principle that 
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the designer of a microarray experiment is ready to accept some type 

I errors, provided that their number is small as compared to the total 

number of rejected hypotheses (i.e. of genes decided DE) 

(Benjamini, 1995). This approach aims at controlling the False Dis-

covery Rate (FDR), i.e. the expected proportion of false positives 

among the total number of positives. Storey & Tibshirani proposed 

to define an equivalent of the p-value for the control of the FDR, the 

q-value (Storey and Tibshirani, 2003). If genes with q-values smaller 

than 5% are decided DE, then there is a FDR of 5% among the DE 

genes. In practice, the q-values can be computed from the p-values, 

and are often called “adjusted p-values”. Most papers reviewed here 

use the q-values corresponding to Benjamini and Hochberg’s rule to 

control the FDR, possibly with an estimation of the number m0 of 

true null hypotheses H0i (i.e. the number of not DE genes), see 

(Storey et al, 2003). 

Let us take the example of Pevsner’s data  available on GEO without 

published analysis. We analyze the expression of human skin fibro-

blasts, from five normal and five from DS individuals, as measured 

by Affymetrix arrays involving 54 675 probes (we use the calls and 

normalized intensity values calculated by the MAS 5 or GCOS 

software as available on GEO). 

We performed the t-test for the transcripts which were considered 

present at least three times in both conditions, i.e. for 22 606 tran-

scripts. The histogram of the corresponding p-values is shown in 

Figure 1.5a. Their distribution is far from being uniform, which 

means that many genes are differentially expressed. As a matter of 
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fact, when controlling only an individual type I error risk of 5% us-

ing the p-values, 2 938 transcripts are decided DE. 

 

  

Figure 1.5 Histograms of the p-values of three statistical hypothesis 

tests: a) Student’s test of equality of the means, b) Fisher’s test of 

equality of the variances, c) Wilcoxon’s non parametric rank sum 

test. 

 

The number of true null hypotheses m0 is roughly given the number 

of p-values in the flat part of the histogram (the on which would cor-

respond to the uniform distribution). It can be estimated at 17 108 

according to Storey & Tibshirani (Storey et al, 2003) (with the tun-

ing parameter ! = 0.5). Using this estimate for the computation of 

the q-values, only 11 transcripts are decided DE when imposing a 

FDR of 5% (76 with a FDR of 10%). 

Let us now discuss the relevance of the t-tests. For a t-test to be 

valid, in addition to the absence of correlation of the measurements, 
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two assumptions are supposed to be true: the normality of the data, 

and the equality of the variance in the two conditions. If, like here, 

the number of measurements is small, the normality can hardly be 

tested efficiently. But (assuming normality), the Fisher test of the 

equality of the variances can indeed be performed. For our example, 

the histogram of its p-values is shown on Figure 1.5b. The distribu-

tion being uniform, as would be the case if all null hypotheses were 

true, we can conclude that the variances are equal in the two condi-

tions, and this justifies the use of the t-test. 

If the previous Fisher test establishes that many variances are differ-

ent, or if non-normality is suspected, a solution could be to use Wil-

coxon’s non parametric rank sum test. A problem then arises with 

small samples that is clearly visible on Figure 1.5c: the Wilcoxon 

statistic being discrete, so are the p-values and hence the q-values. 

Here, the smallest q-value equals 0.26, one cannot impose the FDR 

to be smaller than 26% (627 transcripts are DE with a FDR of 26%). 

Thus, in the situations where the assumptions that the data is normal 

and/or that the variances are unequal are really unsuitable, the best 

alternative is to estimate the empirical distribution of the t-statistics 

using permutation methods such as bootstrap or permutations, see 

Westfall & Young (SS, 1992). A particularly popular and efficient 

permutation method is the Significance Analysis of Microarrays 

(SAM) proposed by Tusher et al. (Tusher et al, 2001). 

 

1.2.4 Differential analysis at the gene set level 
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In order to take full advantage of the differential analysis at the gene 

level, which merely provides an unstructured list of DE genes, an in-

tegration at a higher level is necessary. Thus, the identification of 

predefined sets of biologically related genes enriched or depleted 

with DE genes has become a routine part of the analysis and of the 

interpretation of microarray data. 

Gene sets can be built on several criteria. These criteria can be based 

on the available annotation sources such as GO, the Gene Ontology 

project, KEGG , the Kyoto Encyclopedia of Genes and Genomes, or 

GenMAPP for example. In the case of DS studies, other gene sets of 

interest are the HSA21 genes, or even genes belonging to the spe-

cific bands of HSA21, as analyzed in Slonim et al. (Slonim et al, 

2009). 

The first and most common approaches used to identify gene sets 

enriched or depleted in DE genes are based on the two-by-two con-

tingency table obtained by classifying the genes into “being DE or 

not DE” on one hand, and “belonging to the gene set S of interest or 

not” on the other hand. The statistical significance of the overlap be-

tween being DE and belonging to S can be established more or less 

equivalently using the hypergeometric test, Fisher’s exact test or chi-

square tests, as proposed by many GO processing tools, see Rivals et 

al. (Rivals et al, 2007) for a review. Though these approaches are 

quite efficient, their limitation is to require a preliminary categoriza-

tion into DE and not DE genes, i.e. they necessitate the choice of a 

significance cutoff (be it in the form an individual type I error risk, 

or of a FDR), which is always arbitrary. 
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More recently, several methods have been proposed that avoid cate-

gorizing the genes into DE and not DE, by simply using the t-

statistics or the associated p-values. For example, Sartor et al. 

(Sartor et al, 2009) propose a very intuitive logistic regression ap-

proach, LRpath. Given a gene set S of interest, a target variable y is 

defined as having value 1 for the genes in S, and value 0 for the oth-

ers. The –log(p-value) is used as explanatory variable x, and y is 

modeled by a logistic function of x, 1/(1+exp(–(ax+b)). If the slope 

a is found significant according to a classic Wald test, the subset is 

decided significantly enriched (a > 0) or depleted (a < 0) in DE 

genes. 

Let us illustrate the enrichment/depletion analysis using the hyper-

geometric test and LRpath on the example of Pevsner’s data, simply 

defining the gene subsets of interest according to the chromosomes 

they belong to. For the hypergeometric test, we define a threshold of 

5% for the p-values, i.e. genes with p # 5% are considered DE. The 

percentage of DE transcripts for each chromosome is shown on 

Figure 1.6: with 49% of DE transcripts, chromosome 21 appears 

clearly enriched. But is chromosome 3 significantly depleted with 

10.6%? 
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Figure 1.6 Percentage of DE transcripts for each chromosome (the 

23
th

 is the X). 

 

The p-values of the hypergeometric test and of LRpath are shown in 

Table 1. It is interesting to note that they often disagree (Spearman’s 

! = 0.34), hence the interest for the recent approaches avoiding cate-

gorization into DE/not DE. 

 

   p 

chromosome transcripts DE transcripts  Hypergeometric LRpath Wilcoxon 

1 2087 291 0.44 0.63 0.058 

2 1461 190 0.7 0.36 0.36 

3 1184 125 0.003 7.2 10
-4

 0.0054 

4 788 105 1 0.031 0.015 

5 1054 130 0.33 0.32 0.12 

6 1079 155 0.35 0.18 0.2 

7 954 117 0.32 0.42 0.87 

8 712 94 0.94 0.56 0.3 

9 823 102 0.43 0.99 0.65 

10 839 123 0.29 0.14 0.18 

11 1103 134 0.23 0.28 0.92 

12 1095 154 0.52 0.072 0.061 

13 430 50 0.31 0.59 0.5 

14 700 103 0.32 0.042 0.073 

15 675 106 0.085 0.92 0.78 

16 839 92 0.037 0.0045 0.035 

17 1117 143 0.6 0.44 0.34 

18 329 45 0.92 0.67 0.35 
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19 1109 135 0.24 0.029 0.058 

20 561 62 0.11 0.2 0.13 

21 219 107 7.9e-11 0 0 

22 427 64 0.36 0.93 0.86 

X 665 82 0.46 0.037 0.038 

Table 1.1. Enrichment/depletion tests for the chromosomes (except 

chromosome Y with too few transcripts). 

 

On the other hand, we have computed Wilcoxon’s rank sum statistic 

for the p-values (one group being the set S corresponding to one 

chromosome, the second all the other transcripts), which is in good 

agreement with LRpath (Spearman’s ! = 0.80): we see that this sim-

ple test is a good indicator for enrichment/depletion. 

For the chromosomes for which the three tests agree (chromosomes 

3, 1 and 21), Figure 1.7 shows the results of the logistic regression 

for LRpath. Chromosomes 3 and 15 are depleted in DE genes, 

whereas chromosome 21 is enriched, as expected. 

 

 

Figure 1.7 Logistic regression on –log10(p) for the chromosoms dig-

nificantly enriched or depleted in DE transcrips. 

 

Gene set enrichment analysis (GSEA), in the version proposed by 

Subramanian et al. (Subramanian et al, 2005), is used for example in 

Slonim et al. (Slonim et al, 2009) in order to detect enriched bands 
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on chromosome 21. Like the Wilcoxon test, GSEA uses the com-

plete distribution of the p-values, divides the genes into the set S of 

interest and the rest, and ranks them according to the p-value. But 

the enrichment score is computed by walking down the list, increas-

ing a running sum statistic when a gene in S is encountered, and de-

creasing it when the gene is outside S; the enrichment score is the 

maximum deviation from zero encountered during the walk, and its 

significance is evaluated by estimating the null distribution through 

permutations (i.e. the correlation structure of the gene expression is 

taken into account, what the simple Wilcoxon test does not). 

Finally, let us mention ProbeCD, the method proposed by Vencio & 

Schmulevitch (Vencio and Shmulevich, 2007). ProbCD not only 

presents the advantage of not requiring the choice of a significance 

cutoff, but it is also able to take the uncertainty in the gene annota-

tion into account. 

 

1.3 Results 

Table 1.2 summarizes the data sets considered in this study. As de-

tailed in the previous section, PCA was applied to the normalized 

datasets, on the transcripts expressed across all arrays. Three differ-

ent PCA were systematically performed: one with all expressed tran-

scripts, another with the expressed three-copy transcripts only (those 

of HSA21 or of the triplicated part of MMU16), and the last with the 

remaining euploid transcripts. The ultimate goal of this analysis was 

to visualize whether samples would be grouped according to their 
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genotype (DS or control) and in which conditions (with all genes, 

with triplicated genes only and/or with the euploid genes only). 

Figure 1.8 to Figure 1.14 show the results from these PCA applied to 

the data sets. On all of them, DS samples are shown in black, control 

samples in white. 

From the analysis including the three copy genes only, samples from 

DS models are very clearly separated from samples from euploid 

controls. This is due to the global overexpression of the three copy 

genes that has been largely described previously. Indeed, in DS, 

three-copy genes are globally over-expressed by a mean factor of 

1.5. However at the single gene resolution, this 1.5 overexpression 

does not strictly apply and several comprehensive studies have 

shown that compensation and amplification mechanisms do exist. 

Compensated three-copy genes will not be over-expressed while 

amplified three-copy genes will be over-expressed by a factor sig-

nificantly higher than 1.5 (Ait Yahya-Graison et al, 2007; Prandini 

et al, 2007). 

Authors Sample type 
Number of 

expressed genes 
Statistical test 

Differentially 

expressed genes 

Differentially 

expressed genes 
from Hsa21 

Mao et al. 
Human fetal cortex 

from 
15106 ANOVA (5%) 725  

Mao et al. 
Human fetal 

cultured astrocytes 
15106 ANOVA (5%) 679  

Saran et al. 
Cerebellum from 

adult Ts65Dn mice 
    

Amano et al. 
Whole brain of new 
born Ts1Cje mice 

10602    

Dauphinot et al. 

Cerebellum from 

P0, P15 and P30 

Ts1Cje mice 

8287    

Lockstone et al. 
Human adult 
prefrontal and 

dorsolateral cortex 

    

Pevsner et al. 
Human cultured 

fibroblasts 
 t-test FDR 10% 11  

Pevsner et al. 
Human cultured 

fibroblasts 
 t-test 1% 873  

Slonim et al. 
Human uncultured 

amniotic fluid 
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Table 1.2: list of datasets used in this study. 

 

When comparing the PCA performed on all expressed genes and ap-

plied to the various sets of data, the results are quite different. With 

three sets of data (Figure 1.8, Figure 1.9, Figure 1.10), samples from 

DS models are separated from samples from euploid controls, al-

though comparatively less than when the analysis is applied to three 

copy genes only. With one set of data (Figure 1.11), the separation is 

present in a lesser extent. Finally, with the last three sets of data all 

samples are mixed and no separation is clearly depicted (Figure 

1.11, Figure 1.12, Figure 1.13 and Figure 1.14).  

For the datasets with a clear separation, we tested the influence of 

the three-copy genes. We removed them and run the PCA on all ex-

pressed genes except the three-copy genes. The right panels of 

Figure 1.8, Figure 1.9, and Figure 1.10 show the same projections 

than the right panels, thus suggesting that the categorization into 

normal and DS samples is not due to the overexpression of the three-

copy genes only but rather to a modification of the whole transcrip-

tome. 

We tried to analyze the reasons why datasets would behave differ-

ently towards PCA. One obvious reason would be that there is a fac-

tor which is stronger than the genotype (DS or control) that drives 

the separation of samples. This is the case for samples that include 

different time points during development in the same analysis (Fig-

ure 1.13 and Figure 1.14). On Figure 1.13, samples segregate with 

the litter. In this particular analysis the external granular layer of the 
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cerebellum was dissected at birth (P0) from the Ts1Cje mice. What 

is called P0 can in fact be between birth and P1 depending on the 

time of birth during the day or during the night. According to the 

PCA, samples were separated according to the litter, indicating that 

the up to 12-24 hours can impact seriously on the transcriptome of 

this particular cell type. On Figure 1.14, it is clear that the impact of 

development on gene expression is much bigger than the impact of 

trisomy 21, as was discussed previously (Dauphinot et al, 2005). 

In the case of the data set from Amano et al., again whole brains 

were obtained at birth with possibly an up to 24hours difference be-

tween litters and even between pups. It is known that the embryos 

from a litter are not totally equivalent in term of development de-

pending on their position in the uterus. 

 

 

Figure 1.8 PCA of the data described in Lockstone et al. (Lockstone 

et al, 2007). 
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Figure 1.9 PCA of the data described in Pevsner (GEO GSE9762). 

 

 

Figure 1.10 PCA of the data described in Saran et al. (Saran et al, 

2003). 

 

 

Figure 1.11 PCA of the data described in Mao et al. (Mao et al, 

2003). 
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Figure 1.12 PCA of the data described in Amano et al. (Amano et 

al, 2004). 

 

 

Figure 1.13 PCA of the data described in Laffaire et al. (Laffaire et 

al, 2009). The three markers correspond to three different litters. 

 

 

Figure 1.14 PCA of the data described in Dauphinot et al. 

(Dauphinot et al, 2005). The three markers correspond to three dif-

ferent developmental stages (P0, P15, P30). 

 

1.4 Conclusion 

Functional genomics needs to be applied to complex diseases. In the 

case of Down syndrome, we have used gene expression profiling in 

various human samples or in mouse models and shown that, when 
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we selected the three-copy genes for the analysis, samples were 

separated according to their genotype (DS or euploid) in all data 

sets. This is due to the global over-expression of the three-copy 

genes in DS or in mouse models. When using all expressed genes, 

samples were separated according to their genotype only in some 

datasets. This suggests that, in the datasets with no separation, there 

is a factor other than trisomy that strongly impacts on the transcrip-

tome. We have shown that this factor can be the postnatal develop-

ment of the cerebellum.  

It now remains to be shown whether, beside the global over-

expression of the three-copy genes, there will be a common set of 

genes that is modified in all samples analyzed. We and others have 

tried to search for this group of genes without any frank success. To 

get a more precise answer, very large sets of data will need to be 

generated, or alternatively, gene profiling should be obtained from 

single cells either trisomic or euploid. At the present time, gene ex-

pression profiles are obtained from samples that are too variable 

(different tissues or cells, different time points during development, 

different individuals with too many inter-individual variations and 

not enough samples). If the common set of dysregulated genes does 

not exist, it suggests that the most important trend is the overexpres-

sion of the three-copy genes themselves that secondarily impacts on 

the whole transcriptome in a “stochastic” way. 
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