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Abstract

We answer several comments made by Hansen and Larsen (2001) about our

paper (Rivals & Personnaz, 2000). In this paper, we dealt with the construction of

confidence intervals (CIs) for neural networks based on least squares (LS)

estimation and using the linear Taylor expansion of the network output. We also

suggested a method for the detection of the possible overfitting of a trained neural

network, and an estimate of its leave-one-out (LOO) score that does not

necessitate additional trainings. Finally, we showed that the frequentist approach

we adopt compares favourably with other analytic approaches such as the

conceptually very different Bayesian approach.
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1. On the LOO score in the case of a linear model

An exact expression of the LOO score in the linear case was established long ago

(Antoniadis, Berruyer & Carmona, 1992; Efron & Tibshirani, 1993). In Rivals and

Personnaz (2000), we have put forward an approximate expression of the LOO

score for a nonlinear model. This expression [Eqs. (37) and (38) in Rivals and

Personnaz (2000)] is exact in the case of a linear model [Eqs. (36) and (38) in

Rivals and Personnaz (2000)]. Another approximation of the LOO score had been

proposed by Hansen and Larsen [Eq. (17) in Hansen and Larsen (1996), Eq. (2) in

Hansen and Larsen (2001)], which does not coincide with the exact expression for

a linear model [Eq. (18) in Hansen and Larsen (1996)], Eq. (1) in Hansen and

Larsen (2001)]. In Rivals and Personnaz (2000), we made reference to this

approximation of Hansen and Larsen, and added that �unfortunately, it is not valid

even in the linear case�. We meant that its not being exact in the linear case makes

it problematic for the nonlinear case. Despite their comments, Hansen and



Larsen's approximation is definitely not exact in the linear case (compare Eqs. (1)

and (2) in Hansen & Larsen (2001), see further the Appendix).

2. On the consistency of approximate LOO scores

Another comment of Hansen and Larsen concerns the consistency of both

approximations: they claim that, unlike ours, their approximation is consistent. This

claim is not justified: the theorem 2 in Hansen and Larsen (1996) merely suggests

the consistency of a theoretical limited expansion of the squared LOO error, but it

does not prove the consistency of the approximation of the squared LOO error they

present (see the Appendix for a detailed discussion). As a matter of fact, none of

the two approximations can be claimed to be o(1/N) or o(1/N2), due to the Gauss-

Newton approximation performed in order to apply the matrix inversion lemma.

Thus, the argument of the consistency cannot be retained, and we simply prefer an

approximation that coincides with the exact expression in the linear case.

3. On various approaches to the construction of CIs

The fact that CIs for nonlinear models were presented in Seber and Wild (1989)

has not escaped our attention, and is made clear to the reader in Rivals and

Personnaz (2000): Seber and Wild (1989) is referenced six times!

On the other hand, the paper "Bayesian back-propagation" (Buntine & Weigend,

1991) cannot be considered to present a similar procedure. In the paper, we stress

the important conceptual difference between the frequentist approach we adopt,

and the Bayesian approach. We take explicitly position with respect to the latter, by

stating that we are interested in CIs for the regression. The work by MacKay

(1992a,b) on the construction of CIs in the Bayesian framework is abundantly

referenced, as well as Bishop�s chapter on the subject (Bishop, 1995).

Finally, our paper is not concerned with prediction intervals: thus, the comments

about Eqs. (3) and (4) of Hansen and Larsen (2001) are not to the point.



Appendix. Derivation of the approximate LOO scores

We deal with static modeling problems in the case of a noise free n-input vector

x = x1 x2 � xn
T, and a noisy scalar output yp. We consider a family of nonlinear

models f x, q , x � �
n, q � �

q , and a data set xk, ypk k=1 to N . A LS parameter

estimate qLS minimizes the quadratic cost function (we consider the case with no

regularization):

J q  = 1
2

 ypk � f xk, q 2!
k=1

N

 = 1
2

 yp � f x, q T yp � f x, q

where x = x1 x2 � xN T is the (N,n) input matrix. We denote by qLS
(k) the LS parameter

estimate on the k-th LOO set xi, ypi i=1 to N, i"k . The k-th residual rk and the k-th LOO

error ek are defined by:
rk = ypk � f xk, qLS

ek = ypk � f xk, qLS
(k)

A.1. Linear case

In the case of a linear model , we have:

f x, q  = x q

The LOO error ek is a function of rk and of the k-th diagonal element of the

orthogonal projection matrix px = x xT x -1 xT on the range of x:

ek = rk

1 � px kk

Hence:

ek 2 = 
rk 2

1 � px kk
2

(A1)

The diagonal terms of px verify 0 # px kk # 1; we assume px kk < 1.

A.2. Nonlinear case

In the nonlinear case, let us consider limited expansions of ek 2 in $q(k) = qLS
(k) � qLS.

First order expansion of ek 2 in $q(k):

rk 2 + 
% rk 2

%qT
 
qLS

 $q(k)    = rk 2 + 2 rk 
%rk

%qT
 
qLS

 $q(k) (A2)



Second order expansion of ek 2 in $q(k):

rk 2 + 2 rk 
%rk

%qT
 
qLS

 $q(k) + 1
2

 $q(k) T 
%2 rk 2

%q%qT
 
qLS

 $q(k)

= rk 2 + 2 rk 
%rk

%qT
qLS

 $q(k)    + $q(k) T 
%rk

%q
 
qLS

 
%rk

%qT
 
qLS

 + 
%2rk

%q%qT
 
qLS

 $q(k)

= rk 2 + 2 rk 
%rk

%qT
 
qLS

 $q(k)    + 
%rk

%qT
 
qLS

 $q(k)
2
    + $q(k) T 

%2rk

%q%qT
 
qLS

 $q(k)

= rk + 
%rk

%qT
 
qLS

 $q(k)
2
 + $q(k) T 

%2rk

%q%qT
 
qLS

 $q(k)

(A3)

However, an exact expression of $q(k) is not available. In Rivals and Personnaz

(2000) (Eq. (B7)) as well as in Hansen and Larsen (1996) [Eqs. (8), (15) and (16)

for a non regularized LS cost function], the following approximation of $q(k) is used:

$q(k) = � zT z -1 zk rk

1 � pz kk
(A4)

where zk = %f xk, q /%q q = qLS  and pz = z zT z -1 zT denotes the orthogonal projection

matrix on the range of the (N,n) Jacobian matrix z = z1 z2 � zN T. This result is

obtained when approximating the Hessian with the squared Jacobian (Gauss-

Newton approximation):

h = 
%2J

%q %qT
qLS

 = zk zk T!
k=1

N

 + rk 
%2rk

%q %qT
qLS

!
k=1

N

 � zk zk T!
k=1

N

 = zT z (A5)

This approximation cannot be characterized in terms of an order function unless

the model is true, i.e. unless there exists a value qp of q such that f x, qp  = E Y|x ; in

that case, E H  = zT z. Naturally, this assumption cannot be made for any candidate

model.

1) Hansen and Larsen approximate the first order expansion of ek 2 [Eq. (A2)] by

replacing $q(k) with $q(k):

ek 2
H&L = rk 2 � 2 rk zk

T $q(k)    = rk 2 1 + 
2 pz kk

1 �  pz kk
 = rk 2 

1 + pz kk

1 � pz kk
(A6)

Note that, in the linear case, z = x and pz = px and hence ek 2
H&L " ek 2 [Eq. (A6)]

does not coincide with Eq. (A1)). It is necessary to expand ek 2 up to the order two

for the expansion to be exact in the linear case.

2) We use the square of the first order expansion of ek [Eq. (2)], and replace $q(k)

with $q(k):



ek 2
R&P = rk + 

%rk

%qT
 
qLS

 $q(k)
2
 = rk 2 1

1 � pz kk
2

(A7)

This is an approximation of the second order expansion of ek 2 [Eq. (A3)] which

neglects the term $q(k) T %2rk/%q%qT qLS $q(k).

Note that, in the linear case, ek 2
R&P = ek 2 (Eq. (A7) coincides with Eq. (A1)).

To conclude, ek 2
H&L is an approximation of the first order expansion of ek 2 in

$q(k), and ek 2
R&P is an approximation of the second order expansion of ek 2 in

$q(k). Both approximations replace $q(k) par $q(k) due to the Gauss-Newton

approximation, and in ek 2
R&P, a part of the second order term is neglected due to

a similar approximation. Since $q(k) cannot be characterized in terms of any order

function (the object of the Theorem 2 in Hansen and Larsen (1996) is not $q(k) but

the theoretical unknown $q(k)1), it is impossible to state that either of these

approximations is consistent. We simply prefer an approximation that coincides

with the exact expression in the linear case.
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