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. In this paper, we dealt with the construction of confidence intervals (CIs) for neural networks based on least squares (LS) estimation and using the linear Taylor expansion of the network output. We also suggested a method for the detection of the possible overfitting of a trained neural network, and an estimate of its leave-one-out (LOO) score that does not necessitate additional trainings. Finally, we showed that the frequentist approach we adopt compares favourably with other analytic approaches such as the conceptually very different Bayesian approach.

On the LOO score in the case of a linear model

An exact expression of the LOO score in the linear case was established long ago [START_REF] Antoniadis | Régression non linéaire et applications[END_REF][START_REF] Efron | An introduction to the bootstrap[END_REF]. In [START_REF] Rivals | Construction of confidence intervals for neural networks based on least squares estimation[END_REF], we have put forward an approximate expression of the LOO score for a nonlinear model. This expression [Eqs. (37) and (38) in [START_REF] Rivals | Construction of confidence intervals for neural networks based on least squares estimation[END_REF]] is exact in the case of a linear model [Eqs. (36) and (38) in [START_REF] Rivals | Construction of confidence intervals for neural networks based on least squares estimation[END_REF]]. Another approximation of the LOO score had been proposed by Hansen and Larsen [Eq. (17) in [START_REF] Hansen | Linear unlearning for cross validation[END_REF], Eq. ( 2) in [START_REF] Hansen | Construction of confidence intervals for neural networks based on least squares estimation[END_REF]], which does not coincide with the exact expression for a linear model [Eq. (18) in [START_REF] Hansen | Linear unlearning for cross validation[END_REF]], Eq. (1) in [START_REF] Hansen | Construction of confidence intervals for neural networks based on least squares estimation[END_REF]]. In [START_REF] Rivals | Construction of confidence intervals for neural networks based on least squares estimation[END_REF], we made reference to this approximation of Hansen and Larsen, and added that unfortunately, it is not valid even in the linear case. We meant that its not being exact in the linear case makes it problematic for the nonlinear case. Despite their comments, Hansen and Larsen's approximation is definitely not exact in the linear case (compare Eqs. ( 1) and (2) in [START_REF] Hansen | Construction of confidence intervals for neural networks based on least squares estimation[END_REF], see further the Appendix).

On the consistency of approximate LOO scores

Another comment of Hansen and Larsen concerns the consistency of both approximations: they claim that, unlike ours, their approximation is consistent. This claim is not justified: the theorem 2 in [START_REF] Hansen | Linear unlearning for cross validation[END_REF] merely suggests the consistency of a theoretical limited expansion of the squared LOO error, but it does not prove the consistency of the approximation of the squared LOO error they present (see the Appendix for a detailed discussion). As a matter of fact, none of the two approximations can be claimed to be o(1/N) or o(1/N 2 ), due to the Gauss-Newton approximation performed in order to apply the matrix inversion lemma.

Thus, the argument of the consistency cannot be retained, and we simply prefer an approximation that coincides with the exact expression in the linear case.

On various approaches to the construction of CIs

The fact that CIs for nonlinear models were presented in [START_REF] Seber | Nonlinear regression[END_REF] has not escaped our attention, and is made clear to the reader in [START_REF] Rivals | Construction of confidence intervals for neural networks based on least squares estimation[END_REF]: [START_REF] Seber | Nonlinear regression[END_REF] is referenced six times! On the other hand, the paper "Bayesian back-propagation" [START_REF] Buntine | Bayesian Back-propagation[END_REF]) cannot be considered to present a similar procedure. In the paper, we stress the important conceptual difference between the frequentist approach we adopt, and the Bayesian approach. We take explicitly position with respect to the latter, by stating that we are interested in CIs for the regression. The work by MacKay (1992a,b) on the construction of CIs in the Bayesian framework is abundantly referenced, as well as Bishops chapter on the subject [START_REF] Bishop | Neural Networks for Pattern Recognition[END_REF].

Finally, our paper is not concerned with prediction intervals: thus, the comments about Eqs. ( 3) and (4) of [START_REF] Hansen | Construction of confidence intervals for neural networks based on least squares estimation[END_REF] are not to the point.

Appendix. Derivation of the approximate LOO scores

We deal with static modeling problems in the case of a noise free n-input vector x = x 1 x 2 x n T , and a noisy scalar output y p . We consider a family of nonlinear models f x, q , x ʦ ޒ n , q ʦ ޒ q , and a data set x k , y p k k=1 to N . A LS parameter estimate q LS minimizes the quadratic cost function (we consider the case with no regularization):

J q = 1 2 y p k f x k , q 2 k=1 N = 1 2 y p f x, q T y p f x, q
where x = x 1 x 2 x N T is the (N,n) input matrix. We denote by q LS (k) the LS parameter estimate on the k-th LOO set x i , y p i i=1 to N, ik . The k-th residual r k and the k-th LOO error e k are defined by: r k = y p k f x k , q LS e k = y p k f x k , q LS (k)

A.1. Linear case

In the case of a linear model , we have:

f x, q = x q
The LOO error e k is a function of r k and of the k-th diagonal element of the orthogonal projection matrix p x = x x T x -1 x T on the range of x:

e k = r k 1 p x kk Hence: e k 2 = r k 2 1 p x kk 2 (A1)
The diagonal terms of p x verify 0 p x kk 1; we assume p x kk < 1.

A.2. Nonlinear case

In the nonlinear case, let us consider limited expansions of e k 2 in q (k) = q LS (k) q LS .

First order expansion of e k 2 in q (k) :

r k 2 + r k 2 q T qLS q (k) = r k 2 + 2 r k r k q T qLS q (k) (A2)
Second order expansion of e k 2 in q (k) :

r k 2 + 2 r k r k q T qLS q (k) + 1 2 q (k) T 2 r k 2 qq T qLS q (k) = r k 2 + 2 r k r k q T qLS q (k) + q (k) T r k q qLS r k q T qLS + 2 r k qq T qLS q (k) = r k 2 + 2 r k r k q T qLS q (k) + r k q T qLS q (k) 2 + q (k) T 2 r k qq T qLS q (k) = r k + r k q T qLS q (k) 2 + q (k) T 2 r k qq T qLS q (k) (A3)
However, an exact expression of q (k) is not available. In [START_REF] Rivals | Construction of confidence intervals for neural networks based on least squares estimation[END_REF] (Eq. ( B7)) as well as in [START_REF] Hansen | Linear unlearning for cross validation[END_REF] [Eqs. ( 8), ( 15) and ( 16)

for a non regularized LS cost function], the following approximation of q (k) is used:

q (k) = z T z -1 z k r k 1 p z kk (A4)
where z k = f x k , q /q q = qLS and p z = z z T z -1 z T denotes the orthogonal projection matrix on the range of the (N,n) Jacobian matrix z = z 1 z 2 z N T . This result is obtained when approximating the Hessian with the squared Jacobian (Gauss-Newton approximation):

h = 2 J q q T qLS = z k z k T k=1 N + r k 2 r k q q T qLS k=1 N Ϸ z k z k T k=1 N = z T z (A5)
This approximation cannot be characterized in terms of an order function unless the model is true, i.e. unless there exists a value q p of q such that f x, q p = E Y|x ; in that case, EH = z T z. Naturally, this assumption cannot be made for any candidate model.

1) Hansen and Larsen approximate the first order expansion of e k 2 [Eq. (A2)] by replacing q (k) with q (k) :

e k 2 H&L = r k 2 2 r k z k T q (k) = r k 2 1 + 2 p z kk 1 p z kk = r k 2 1 + p z kk 1 p z kk (A6)
Note that, in the linear case, z = x and p z = p x and hence e k 2 H&L e k 2 [Eq. (A6)]

does not coincide with Eq. (A1)). It is necessary to expand e k 2 up to the order two for the expansion to be exact in the linear case.

2) We use the square of the first order expansion of e k [Eq. ( 2)], and replace q (k) with q (k) :

e k 2 R&P = r k + r k q T qLS q (k) 2 = r k 2 1 1 p z kk 2 (A7)
This is an approximation of the second order expansion of e k 2 [Eq. (A3)] which neglects the term q (k) T 2 r k /qq T qLS q (k) .

Note that, in the linear case, e k 2 R&P = e k 2 (Eq. (A7) coincides with Eq. ( A1)).

To conclude, e k 2 H&L is an approximation of the first order expansion of e k 2 in q (k) , and e k 2 R&P is an approximation of the second order expansion of e k 2 in q (k) . Both approximations replace q (k) p ar q (k) due to the Gauss-Newton approximation, and in e k 2 R&P , a part of the second order term is neglected due to a similar approximation. Since q (k) cannot be characterized in terms of any order function (the object of the Theorem 2 in [START_REF] Hansen | Linear unlearning for cross validation[END_REF] is not q (k) but the theoretical unknown q (k)1 ), it is impossible to state that either of these approximations is consistent. We simply prefer an approximation that coincides with the exact expression in the linear case.