
HAL Id: hal-00797391
https://espci.hal.science/hal-00797391

Submitted on 6 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A recursive algorithm based on the extended Kalman
filter for the training of feedforward neural models

Isabelle Rivals, Léon Personnaz

To cite this version:
Isabelle Rivals, Léon Personnaz. A recursive algorithm based on the extended Kalman filter for the
training of feedforward neural models. Neurocomputing, 1998, 20 (1-3), pp.279-294. �hal-00797391�

https://espci.hal.science/hal-00797391
https://hal.archives-ouvertes.fr

In Neurocomputing 20(1-3): 279-294 (1998).

A recursive algorithm based on the extended Kalman filter

for the training of feedforward neural models

Isabelle Rivals and Léon Personnaz

Laboratoire d'Électronique, École Supérieure de Physique et Chimie Industrielles,

10 rue Vauquelin, 75231 Paris Cedex 05, France.

Phone: 00 33 1 40 79 45 45 Fax: 00 33 1 40 79 44 25

E-mail: Isabelle.Rivals@espci.fr

Abstract

The Extended Kalman Filter (EKF) is a well known tool for the recursive parameter estimation of static and

dynamic nonlinear models. In particular, the EKF has been applied to the estimation of the weights of

feedforward and recurrent neural network models, i.e. to their training, and shown to be more efficient than

recursive and non recursive first-order training algorithms; nevertheless, these first applications to the training of

neural networks did not fully exploit the potentials of the EKF. In this paper, we analyze the specific influence of

the EKF parameters for modeling problems, and propose a variant of this algorithm for the training of

feedforward neural models which proves to be very efficient as compared to non recursive second-order

algorithms. We test the proposed EKF algorithm on several static and dynamic modeling problems, some of

them being benchmark problems, and which bring out the properties of the proposed algorithm..

Keywords: Feedforward Neural Networks; Process Modeling; Second-Order Training Algorithms; Extended

Kalman Filter.

1. Introduction

The Kalman Filter (KF) provides a solution to the problem of estimating the state of

processes described by linear stochastic dynamic models. In the case of a nonlinear model, the

Extended Kalman Filter (EKF), which was proposed in the early sixties, linearizes the model

around the current state estimate, and applies the KF to the resulting time-varying linear

model. The EKF was then very soon applied to the estimation of unknown parameters of

linear dynamic systems, by including the unknown parameters in the state of the system [5].

Recently, the EKF has also been used for the estimation of unknown parameters of nonlinear

static or dynamic systems, thus to the training of neural network models, i.e. to the estimation

of their weights, both for feedforward networks [14] [11], and for recurrent networks [7] [15].

In these papers, it was mainly shown that the EKF converges faster and to lower minima than

recursive and non recursive first-order Prediction Error Methods (PEM) using the

backpropagation algorithm to compute the gradient of the cost-function.

Nevertheless, these first attempts to use the EKF for the training of neural networks did not

fully exploit the potentials of the EKF. In this paper, we propose a variant of the EKF

algorithm which compares with the most efficient non recursive second-order algorithms on

static and dynamic modeling problems involving the training of feedforward neural networks.

The paper is organized as follows: Section 2 describes the black-box modeling problems

using feedforward neural networks we are dealing with. Section 3 recalls the classic training

of such neural models with a non recursive second-order PEM. Section 4 presents the

application of the EKF to the training of feedforward neural models, and, after an analysis of

the influence of the algorithm parameters, proposes an efficient choice of their values. Section

5 tests the proposed EKF algorithm on several modeling problems, among them benchmark

problems which allow a direct comparison to the previous attempts to use the EKF for the

training of neural networks, and to a non recursive second-order algorithm.

2. Process modeling using feedforward neural networks

We deal with the following black-box modeling problems involving the training of

feedforward neural models (for the sake of the simplicity and of the clarity of the

presentation, we restrict to single-output problems, but the EKF algorithm proposed in section

4 can be easily extended to the multiple-output case):

Static modeling problems

We consider the static modeling of a process with nx-input vector x and scalar output yp. In

the input domain of interest, the static behavior of the process for a fixed input x a is assumed

to be described by:

yp
a = f(x a) + w a (1)

where w a is a random variable with zero mathematical expectation and variance sw
2, and

where the regression function f(x) = E yp x is nonlinear and unknown. The modeling

problem consists in finding a neural network which gives a good estimation of the regression

in the input domain of interest.

Let e > 0 be an arbitrary small scalar. Since feedforward neural networks using ridge

functions (for example multi-layer perceptrons (MLP) with tanh activation function hidden

neurons) have been shown to be universal approximators [3], there exists at least a

feedforward neural network f x ; q , where q � � nq denotes the weights of the network, and a

value qe of its weights, such that:

 f(x) � f x ; qe < e (2)

in the input domain of interest. A neural network with a sufficient number of neurons can thus

theoretically implement a good estimation of the regression in this domain.

NARX modeling problems

An important class of dynamic modeling problems also involves the training of

feedforward neural models. Let us consider a process with scalar input u and scalar output yp

affected by additive state noise (Nonlinear AutoRegressive with eXogenous input process)

whose dynamic behavior is assumed to be described by:

yp(k) = f yp(k-1), �, yp(k-ny), u(k-1), �, u(k-nu) + w(k) (3)

where {w(k)} is a sequence of independent and identically distributed (i.i.d.) random variables

with zero expectation and variance sw
2. The regression function f(x k) = E yp

k xk is

nonlinear and unknown, where yp
k denotes the value taken by yp(k), and xk the vector of

nx = ny + nu past outputs and inputs yp(k-1) � yp(k-ny) u(k-1) � u(k-nu) T . The regression

function provides the optimal prediction of the process output [9] [13].

The universal approximation property again ensures that a feedforward neural network

with a sufficient number of neurons can in principle implement a predictor which is arbitrarily

close to the optimal one in the input domain of interest.

For these two classes of modeling problems, an estimation of the regression f, i.e. of the

weights of a neural model, will be obtained using a finite set of N examples x k, yp
k

k=1 to N ,

or training set, where yp
k denotes the value taken by yp(k) in the case of a NARX modeling

problem.

3. Feedforward neural model training with non recursive prediction error methods

The estimation of the network weights can be achieved with a classic PEM, that is by

minimizing the following quadratic cost-function, in a non recursive, iterative fashion (batch

training):

J(q) = 1
2

 ek 2!
k=1

N

 = 1
2

 yp
k � f x k ; q 2!

k=1

N

(4)

The common principle of second-order algorithms is to compute a descent direction obtained

by a linear transformation of the gradient using the Hessian of the cost-function, or an

approximation of it. In this paper, a Levenberg-Marquardt algorithm is used: at each epoch,

the weights are updated according to:

"q = � H + l Inx

-1
 #J(q) (5)

where #J(q) denotes the gradient of the cost-function, In denotes the n, n identity matrix.

The matrix H is an approximation of the Hessian whose components (H)ij are given by:

(H)ij =
$ek

$qi

$ek

$qj
!
k=1

N

(6)

where the $ek / $qi are computed in an economical fashion with the backpropagation

algorithm. The training parameter l is chosen so as to guarantee that the cost-function is

diminished, and l is decreased as much as possible in order to tend to a Newton-like direction

as soon as a minimum is approached. A simple and efficient algorithm for setting l is given in

[10].

With a sufficiently large number of hidden neurons, it is possible to guarantee that the

mean square error on the training set, the TMSE = 2
N

 J(q), becomes arbitrarily small.

Nevertheless, the problem of finding a function from a finite set of points, the training set, is

an ill-posed problem. Thus, even if for a given e the TMSE obtained after training is smaller

than e2 , (2) might not be satisfied in the whole input domain of interest, due to overfitting.

In practice, overfitting can be avoided by the successive trainings of neural models with an

increasing number of neurons, and by selecting the minimal size neural model with the

smallest mean square error on a performance estimation set (the PMSE), which is independent

from the training set. We will refer to this type of procedure as �Stepwise Modeling

Procedure�, as illustrated in Fig. 1.

0 2 4 6 8 10

PMSE

TMSE

number of hidden neurons

Fig. 1. Stepwise Modeling Procedure: the arrow indicates the selected neural network.

In order to avoid overfitting, it is possible to use a third independent set, or validation set,

to perform an early stopping of each training: this is sometimes called �implicit

regularization�, as opposed to an �explicit regularization�. A simple form of explicit

regularization is the so-called �weight decay� [1], which consists in adding the sum of the

squares of the network parameters, weighted by a regularization parameter r > 0, to the cost-

function (4):

Jr(q, r) = 1
2

 yp
k � f x k ; q 2!

k=1

N

 + r q 2 (7)

A large value of r constrains the weights to be small, and thus prevents overfitted regions

with large curvatures. Nevertheless, a performance estimation set is still needed to select a

neural model among the candidates.

4. Proposed algorithm for the training of feedforward neural models based on the

extended Kalman filter

We consider a modeling problem defined by a training set x k, yp
k

k=1 to N and a candidate

neural model f x ; q . Let us make the assumption (which is not necessarily true) that the

family of functions defined by the neural network contains the regression function f present in

(1) or (3), i.e. that there exists a value qp of q such that:
f x ; qp = f(x) (8)

The EKF (for a general presentation of the EKF, see for instance [2]) can then be used as a

recursive algorithm for the estimation of the weights of the neural model by considering the

following dynamic system, which is equivalent to (1) or (3):
qp(k+1) = qp(k) (= qp)

yp(k) = f x(k) ; qp(k) + w(k) (9)

where x(k) and yp(k) are the values taken by the training pair x k and yp
k , the order being

arbitrary in the case of a static modeling problem; {w(k)} denotes a white noise sequence with

zero expectation and variance sw
2. The EKF applied to system (9) gives at time k an estimate

q(k) of the weight vector qp by the following recursion:

H(k) =
$f x(k) ; q

$q

q = q(k -1)

P(k) = P(k-1) �
P(k-1) H(k) H(k)T P(k-1)

H(k)T P(k-1) H(k) + r

K(k) =
P(k) H(k)

r
q(k) = q(k-1) + K(k) yp(k) � f x(k) ; q(k-1)

(10)

H(k) is the gradient vector of the output of the neural network with respect to the weights

around their available value q(k-1), gradient which is computed with the backpropagation

algorithm. In this parameter estimation frame, the matrix P(k) is a recursive estimate of the

covariance matrix of the error on the weight vector qp � q(k). K(k) is the Kalman gain vector.

At the first time step k = 1, q(0) and P(0) are fixed to arbitrary values q0 and P0. This

procedure can be iterated by presenting the training sequence as often as necessary. The EKF

recursion is based on a linearization, and there are no established conditions for its

convergence.

Let us now discuss the influence of the algorithm parameters: the initial weight vector q0,

the initial matrix P0, and the scalar r.

The initial weight vector q0, the initial matrix P0, and the scalar r

One would like to initialize the weight vector close to its �true� value qp using a priori

knowledge, which is not possible in the case of a neural black-box model. For the networks

with tanh hidden neurons used in this paper, the weights should thus be initialized in the same

way as when the network is to be trained by a PEM method, i.e. such that the initial output

values of the hidden neurons are in the linear part of the tanh. We propose to initialize the

weights with small random values, a choice which is also made in most EKF approaches (in

[4], [11] and [12] for example).

Initially, since H(0) is fixed by the problem and by q0, the weight changes are governed by

the quantity P0
r

. If P0
r

 is large, the weight estimates are allowed to change much and fast

during the first time instants. As opposed to the case of a linear model, such large changes in

the weights of a neural model are not desirable for two reasons: (i) due to the linearization

around the initial weight estimates, which are very inaccurate, these changes may be

inappropriate and drive the algorithm to a local minimum; (ii) the weights of a neural model

with tanh hidden neurons and normalized input and output values implementing a reasonably

smooth function are usually of the order of 1. In order to avoid large initial weight changes,

we thus propose to initialize P0 to p0 In%, with
p0
r

 small, typically
p0
r

 = 10-2. This choice

differs from that made in [4] and [11], where the constraints imposed by the use of neural

network are not particularly taken into account, and where the diagonal terms of P0 are

chosen of the order of 100, r being also set to value close to 1.

In the theoretical EKF formulation, the scalar r is sw
2, the variance of the measurements

in the assumed models (1) or (3). Thus, the smaller the value of r, the more the measurements

are taken into account by the EKF algorithm; as a matter of fact, the parameter r can be

considered as an inverse learning rate [12]. We propose here to decrease r from a value r0

equal to the initial TMSE (which is of the order of 1 in the case of normalized process outputs

yp
k and small initial weights q0) to a small value rf, with for instance an exponential decay:

r(i) = (r0 � rf) exp �a i + rf (11)

where i denotes the number of the epoch, and a > 0. The greater the value of a, the faster the

convergence, with a problem-dependent upper limit due to the possible numerical instability

at the beginning of the training. Note that the parameter r can also be decreased between time

instants, as proposed in [12], [14] and [15]. The parameter r0 being now fixed to a value close

to 1, we can take p0 & 10-2 . Let us show on an example the influence of rf .

We consider the static modeling of a process with scalar input x and output yp. The training

set consists of N = 40 pairs with inputs in the range -1 ; 1 , the process behavior being

described by the following model:

yp
k = f(x k) + w k (12)

where f is the discontinuous function f(x) = � 1 if x ' 0, f(x) = sinc 10 x if x > 0, sinc

denoting the cardinal sine function, and {w(k)} is a set of gaussian variables with

sw
2 = 5 10-2. An independent set of 1000 examples is used for performance estimation. In

order to make overfitting possible, a MLP with one layer of 10 tanh hidden neurons and a

linear output neuron is chosen, which is indeed large with respect to N, to sw
2, and to the

complexity of f. As a matter of fact, training the network with the Levenberg-Marquardt

algorithm without regularization leads to a TMSE of 3 10-2 < sw
2, and a PMSE of

3 10-1 >> sw
2, the weights being initialized with a uniform distribution in -0.17 ; 0.17 (i.e.

with a variance of 10-2).

With the same weight initialization, and r0 = TMSE (0) = 0.6, p0 = 10-2, a = 0.5, we then

study the influence of the value of rf on the TMSE and PMSE obtained with the EKF, as

shown on Fig. 2. Note that the minimal PMSE is obtained for rf = 10-5, and not for the value

of the measurement noise rf = sw
2 = 5 10-2.

0

0.2

10-15 10-10 10-5 100

PMSE

TMSE

rf

sw2 = 0.05

Fig. 2. Discontinuous function problem: Performance of neural models with a hidden layer of 10 sigmoidal
neurons and a linear output neuron, trained with the proposed EKF algorithm for different values of rf .

The functions implemented for three values of rf are shown on Fig. 3.

-1 -0.5 0 0.5 1
-2

-1

0

1

2

x

Fig. 3. Discontinuous function problem: Functions implemented by neural models with a hidden layer of 10
sigmoidal neurons and a linear output neuron, trained with the proposed EKF algorithm for three values of rf :

rf = 10-1 (thick dotted line), the optimal value rf = 10-5 (thick solid line), and rf = 10-13 (thin solid line).

As expected, the greater the value of rf , the less the measurements are taken into account

by the EKF. In other words, the parameter rf acts like a regularization parameter: for a

network with a given number of neurons, the greater the value of rf , the smoother is the

function obtained, and the greater is the TMSE. In a situation where one would use a PEM

with regularization, typically in the case of very noisy data and/or of a small training set, one

should in the same way choose a final value rf which is not too small. Nevertheless, in the

frame of a Stepwise Modeling Procedure, regularization is usually not necessary since this

procedure selects a neural model which does not overfit. We thus propose to use the EKF with

rf � 0 in order to obtain a solution corresponding to a minimum of the cost-function (4) at

least as good as that obtained with a Levenberg-Marquardt algorithm without regularization.

Remark

The EKF is able to take state noise into account by considering for example the following

state equation:

qp(k+1) = qp(k) + v(k) (13)

where {v(k)} denotes a random vector with zero mean and covariance matrix Q. In the frame

of parameter estimation, state noise is usually introduced in order to model a possible drift of

the parameters [6]. However, in the case of a time-invariant neural model, i.e. for which the

weights must converge to constant values, they should not be allowed to drift. Nevertheless, a

diagonal matrix Q with positive components is sometimes added in the update equation for

P(k) both to avoid numerical instability, and to help to avoid local minima [11] [12]. But the

adequate order of magnitude of the elements of Q which simultaneously makes the weights

converge to constant values seems to be highly problem-dependent. In subsection 5.4, we

compare the proposed EKF algorithm to the EKF variant using a non zero matrix Q on a

benchmark problem.

Summary

The proposed EKF algorithm uses the classic recursion (10) corresponding to a dynamic

model without state noise, with initial weights q0 fixed to small random values, the parameter

r decreasing between epochs according to equation (11), where the initial value r0 is taken

equal to the initial TMSE, the final value rf is chosen close to zero if no regularization is

wished, and the decay parameter a is of the order of 1, and finally the scalar matrix P0 with

small diagonal components (for example P0 = 10-2 In%). These choices are valid for neural

networks using tanh activation functions, and normalized input-output data.

5. Simulation examples

In this section, we deal with static and dynamic modeling problems, some of them being

benchmark problems. They serve as a basis for the comparison of the proposed EKF

algorithm to the Levenberg-Marquardt algorithm, and to EKF variants proposed in the

literature. Three kinds of neural networks are used:

� FCP nx, nh
tanh, no

linear denotes a fully connected perceptron with nx inputs, nh hidden

neurons, and no output neurons, the superscript indicating the activation function of the

neurons; the output xi of neuron i is given by:

xi = fi cij xj!
j=0

i-1

 i = nx+1 to nx+no (14)

where fi is the activation function of neuron i, x0 is the bias, and the cij are the

components of the weight vector q;

� MLP nx, n1
tanh, �, nh

tanh, no
linear denotes a MLP with nx inputs, h layers of hidden

neurons, and no output neurons;

� MLDCP nx, n1
tanh, �, nh

tanh, no
linear denotes a MLP with additional direct connections

from inputs to outputs.

5.1. Modeling a cardinal sine function (static single-input problem with noise)

We consider the static modeling of a process with scalar input x and output yp. The training

set consists of N = 200 pairs with inputs in -1 ; 1 , the behavior of the process being

simulated by:

yp
k = sinc 7 (x k + 0.25) + w k (15)

where {w(k)} is a set of gaussian variables with sw
2 = 10-5. An independent set of 1000

examples is used for performance estimation. The training set is shown on Fig. 4.

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

x

Fig 4. Sinc problem: Training set.

A Stepwise Modeling Procedure using MLP 1, n1
tanh, 1linear trained with the Levenberg-

Marquardt algorithm, their weights being initialized in -0.17 ; 0.17 , shows that the optimal

number of neurons is n1 = 5; the corresponding TMSE and PMSE are close to the noise

variance (respectively 1.0 10-5 and 1.1 10-5).

The proposed EKF algorithm with p0 = 10-2, r0 = TMSE (0) = 0.2, rf = 10-40, and a decay

factor a in the range 0.1 ; 5.0 , leads to the same performance as the Levenberg-Marquardt

algorithm. The error of a neural network obtained with the proposed EKF algorithm on the

performance estimation set is shown in Fig. 5.

-1 -0.5 0 0.5 1
-0.01

-0.005

0

0.005

0.01

x

Fig. 5. Sinc problem: Error on the performance estimation set obtained with a MLP 1, 5tanh, 1linear trained by

the proposed EKF algorithm with rf = 10-40.

Using a larger final value of r, rf = sw
2 = 10-5, and for example a = 0.5, the results are less

satisfactory: the TMSE equals 3.8 10-5 and the PMSE 3.9 10-5. The error of the neural

network obtained is shown in Fig. 6.

-1 -0.5 0 0.5 1
-0.01

0

0.01

0.02

0.03

x

Fig. 6. Sinc problem: Error on the performance estimation set obtained with a MLP 1, 5tanh, 1linear trained by

the proposed EKF algorithm with rf = sw
2 = 10-5.

The evolution of the TMSE for the different algorithms is shown in Fig. 7: as expected, the

greater the value of a, the faster the convergence.

epoch

Levenberg-Marquardt

Proposed EKF algorithm

Proposed EKF algorithm

0 20 40 60 80 100

TMSE

100

10-2

10-4

10-6

(w
2 = 10-5

with) = 0.5 and

with) = 1.0 and

rf = 10-40

rf = 10-40

Proposed EKF algorithm
with) = 0.5 and rf = (w

2 = 10-5

Fig. 7. Sinc problem: Evolution of the TMSE.

5.2. The pseudo XOR problem (static 2-input benchmark problem without noise)

The pseudo XOR problem is an academic 2-input classification problem with two non

overlapping classes, class 1 occupying the first and third quadrants of the plan, and class 2 the

second and fourth quadrants, as shown in Fig. 8.

1

1 2

2

1.0

-1.0

1.0-1.0

x1

x2

Fig. 8. Pseudo XOR problem: Regions occupied by the two non overlapping classes.

A solution to this problem with the EKF was first proposed in [14]. They chose a training

set consisting of N = 1000 samples filling the region uniformly. MLP 2, n1
tanh, 1tanh were

trained. For ten different initialisations of MLPs with up to n1 = 4, a gradient algorithm was

never able to achieve correct �decision regions� (i.e. the regions defined by the sign of the

output). The EKF with r = cte = 1.0 and Q = 0 led a MLP 2, 3tanh, 1tanh to correct decision

regions six times out of ten, with an average TMSE of 1.1 10-1, and a MLP 2, 4tanh, 1tanh

nine times out of ten, with an average TMSE of 3.0 10-2, after 645 epochs.

As a matter of fact, this problem should be considered as a static modeling problem:

yp = sign x1 x2 �1 < xi < 1, i=1 to 2 (16)

rather than as a classification problem; since the classes are non overlapping, it is clear that r

should tend to a value close to zero. An analysis of the problem shows that the smallest neural

networks which are able to approach (16) with a good accuracy are a MLP 2, 3tanh, 1tanh ,

and a MLDCP 2, 2tanh, 1tanh . We trained the latter for ten different initializations of the

weights uniformly in -0.17 ; 0.17 , the training being stopped for a TMSE of 10-15. The

Levenberg-Marquardt algorithm converged to 10-15 seven times out of ten. The proposed EKF

algorithm with p0 = 10-2, r0 = 1.0, rf = 10-40 and a in the range 0.5; 2.0 led the TMSE to 10-

15 nine times out of ten, and once to 8.0 10-3, always leading to correct decision regions. The

convergence of the different algorithms is shown on Fig. 9; again, increasing a speeds up the

convergence of the proposed EKF algorithm.

epoch

Levenberg-Marquardt

0 50 100 150

TMSE

105

100

10-5

10-10

10-15

Proposed EKF algorithm
with a = 0.5

Proposed EKF algorithm
with a = 1.0

Fig. 9. Pseudo XOR problem: Evolution of the TMSE.

-1
0

1

-1

0

1
-1

0

1

x1
x2

Fig. 10. Pseudo XOR problem: Function implemented by a MLDCP 2, 2tanh, 1tanh trained with the proposed
EKF algorithm and with a final TMSE of 10-15.

The function implemented by a network trained with the proposed EKF algorithm is shown

in Fig. 10: it is remarkable that the proposed EKF algorithm, which is based on the

linearization of the function implemented by the neural model around the current weight

estimate, converges successfully to a quasi discontinuous function.

5.3. Modeling a first-order NARX process (dynamic 2-input problem with noise)

This example deals with the modeling of a NARX process simulated by the following first-

order single-input, single-output equation:

yp(k) = f yp(k-1), u(k-1) + w(k)

= 1 � 0.1
1+ 5yp(k-1)2

 yp(k-1) +

exp �
yp(k-1)2

0.32
1+ 5yp(k-1)2

 u(k-1) � exp �
yp(k-1)�0.5 2+ u(k-1)+0.5 2

0.02
 + w(k)

(17)

where yp(k) is the process output sequence, u(k) the control input sequence, and {w(k)} is

a sequence of i.i.d. zero mean gaussian variables of variance sw
2 = 10-3. The training control

input sequence {u(k)} consists of N = 1000 random variables with uniform distribution in

-1 ; 1 . A sequence for performance estimation of 1000 sampling periods is generated in the

same manner. A contour plot of the function to be estimated, and the inputs of the training set

are shown on Fig. 11a).

u(k-1)

yp(k-1)

-1 0 1
-1

-0.5

0

0.5

1

u(k-1)

yp(k-1)

-1 0 1
-1

-0.5

0

0.5

1

a) b) .
Fig. 11. First-order NARX process problem: Training set inputs and contour plots of: a) Function to be

estimated; b) Function implemented by a FCP 2, 7tanh, 1linear trained with the proposed EKF algorithm.

The function f being complex, FCP 2, nh
tanh, 1linear are used, whose weights are initialized

uniformly in -0.17 ; 0.17 . The comparison of the algorithms is performed for nh = 7, the

optimal number of neurons found with the Stepwise Modeling Procedure using the proposed

EKF algorithm with p0 = 10-2, r0 = 0.4, rf = 10-40, and a in 0.1 ; 2.0 : the TMSE equals

9.3 10-4, and the PMSE 1.1 10-3. The function obtained with a = 0.5 is shown on Fig. 11b).

The Levenberg-Marquardt algorithm leads to less satisfactory results, with a TMSE of 3.2 10-

3 and a corresponding PMSE of 4.3 10-3. These results do not vary for different initializations

of the weights. The evolution of the TMSE for the different algorithms is shown on Fig. 12.

epoch

Levenberg-Marquardt

0 10 20 30 40 50

TMSE

100

10-1

10-2

10-3

10-4

Proposed EKF algorithm
with a = 0.5

Proposed EKF algorithm
with a = 1.0

Fig. 12. First-order NARX process problem: Evolution of the TMSE.

5.4. Modeling a third-order deterministic process (dynamic 5-input benchmark problem

without noise)

This last example deals with the modeling of a nonlinear simulated process given in [8],

and which was also modeled in [11]. The process is described by a deterministic third-order

single-input, single-output model:

yp(k) =
yp(k-1) yp(k-2) yp(k-3) yp(k-3) � 1 u(k-2) + u(k-1)

1 + yp(k-2)2 + yp(k-3)2
(18)

where yp(k) is the process output sequence, and {u(k)} the control input sequence. The

training control input sequence {u(k)} consists of N = 1000 random variables with a uniform

distribution in -1 ; 1 . A similar input sequence is chosen for performance estimation. As in

[11], a MLP 5, 12tanh, 8tanh, 4tanh, 1linear is used.

In [11], the EKF is used with a diagonal matrix Q whose components are small and non

negative and r = cte = 1, and leads to an average TMSE of 1.2 10-3. Note that [11] uses an

economic - decoupled - variant of the EKF, which might contribute to the lower quality of the

results.

epoch

Levenberg-Marquardt

0 20 40 60 80 100

TMSE

100

10-2

10-4

10-6

10-8

Proposed EKF algorithm
with a = 0.5

Proposed EKF algorithm
with a = 1.0

Fig. 13. Third-order deterministic process problem: Evolution of the TMSE.

With our approach, since the process is noise free, it is clear that r should tend to a value

close to zero. The proposed EKF algorithm is used with p0 = 10-2, r0 = 0.2, rf = 10-40, a in

0.1 ; 2.0 , and the initial weights in -0.17 ; 0.17 . As shown on Fig. 13, a TMSE of 2.6 10-7

and a PMSE of 5.9 10-7 are reached, whereas the results obtained using a Levenberg-

Marquardt algorithm are less satisfactory. These results do not vary for different initializations

of the weights. Note that a FCP 5, 15tanh, 1linear trained with the proposed EKF algorithm

leads to the same performance as the above MLP.

5.5. Discussion

The preceding examples confirm the following facts concerning the choice of the EKF

parameters we propose:

� the initialization of the weights of the neural network q0 according to the same criteria as

when training the neural network with a PEM method and the choice of a small ratio
p0
r0

prevent from too large parameter changes when the algorithm is started;

� the choice of r decreasing between epochs from the initial TMSE to a value close to zero

with an exponential decay factor a of the order of 1 leads with robustness to a satisfactory

minimum of the cost-function (4); increasing a up to a problem-dependent limit speeds up

the convergence.

6. Conclusion

The simulation examples we have presented illustrate the analysis of the influence of the

EKF algorithm parameters made in section 4, and show that the choices we propose lead to

excellent results. The comparison made with the Levenberg-Marquardt algorithm demonstrate

the ability of the proposed EKF algorithm to perform at least as good as the most efficient non

recursive second-order algorithms. Finally, the results obtained on benchmark problems show

its superiority over EKF variants which have been proposed in the past.

A straightforward extension of this work will be to consider multiple-output problems, i.e.

the scalar r becomes a matrix. Another promising extension will be to exploit the regularizing

power of r, both in the single- and in the multiple-output case.

Acknowledgements

We thank the anonymous reviewers for their very careful reading of the manuscript and

their constructive comments.

References

[1] Bishop M. Neural Networks for Pattern Recognition (Clarendon Press, Oxford, 1985),

338-346.

[2] Goodwin G. C., Sin K. S. Adaptive filtering prediction and control (Prentice-Hall, New

Jersey, 1984), 293-294.

[3] Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal

approximators, Neural Networks 2 (1989), 359-366.

[4] Jin L., Nikiforuk P. N., Gupta M. M. Weight-decoupled Kalman filter learning

algorithm of multi-layered neural networks, Neural Network World 1/95 (1995), 51-70.

[5] Ljung L. Asymptotic behavior of the extended Kalman filter as a parameter estimator

for linear systems, IEEE Trans. on Automatic Control 24 (1979), 36-50.

[6] Ljung L., Söderström T. Theory and practice of recursive identification, (MIT Press,

Cambridge, 1987), 54-56.

[7] Matthews M. B., Moschytz G. S. Neural-network nonlinear adaptive filtering using the

extended Kalman filter algorithm, International Neural Network Conference, Paris

(1990), 115-118.

[8] Narendra K. S., Parthasarathy K. Identification and control of dynamical systems using

neural networks, IEEE Trans. on Neural Networks 1 (1990), 4-27.

[9] Nerrand O., Roussel-Ragot P., Personnaz L., Dreyfus G. Training recurrent neural

networks: why and how ? An illustration in process modeling, IEEE Trans. on Neural

Networks 5 (1994), 178-184.

[10] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical Recipes in C

(Cambridge, University Press, 1992), 684.

[11] Puskorius G. V., Feldkamp L. A. Decoupled extended Kalman filter training of

feedforward layered networks, Proceedings of IJCNN�91 I, Seattle (1991), 771-777.

[12] Puskorius G. V., Feldkamp L. A. Neurocontrol of nonlinear dynamical systems with

Kalman Filter trained recurrent networks, IEEE Trans. on Neural Networks 5 (1994),

279-297.

[13] Rivals I., Personnaz L. Black-box modeling with state-space neural networks, in Neural

Adaptive Control Technology I, R. Zbikowski and K. J. Hunt eds. (World Scientific,

1996), 237-264.

[14] Singhal S., Wu L. Training multilayer perceptrons with the extended Kalman algorithm,

Advances in Neural Information Processing Systems I (Morgan Kaufmann, San Mateo

1989), 133-140.

[15] Williams R. J. Training recurrent networks using the extended Kalman filter,

Proceedings of IJCNN�92 IV, Baltimore (1992), 241-246.

