Some properties of the parking function poset - Algebraic combinatorics and symbolic computation
Pré-Publication, Document De Travail Année : 2021

Some properties of the parking function poset

Résumé

In 1980, Edelman defined a poset on objects called the noncrossing 2-partitions. They are closely related with noncrossing partitions and parking functions. To some extent, his definition is a precursor of the parking space theory, in the framework of finite reflection groups. We present some enumerative and topological properties of this poset. In particular, we get a formula counting certain chains, that encompasses formulas for Whitney numbers (of both kinds). We prove shellability of the poset, and compute its homology as a representation of the symmetric group. We moreover link it with two well-known polytopes : the associahedron and the permutohedron.
Fichier principal
Vignette du fichier
PFP190321sc.pdf (640.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03174934 , version 1 (26-03-2021)
hal-03174934 , version 2 (05-01-2023)

Identifiants

Citer

Bérénice Delcroix-Oger, Matthieu Josuat-Vergès, Lucas Randazzo. Some properties of the parking function poset. 2021. ⟨hal-03174934v1⟩
81 Consultations
241 Téléchargements

Altmetric

Partager

More