Improving The Automatic Segmentation Of Elongated Organs Using Geometrical Priors - Equipe Image, Modélisation, Analyse, GEométrie, Synthèse Access content directly
Conference Papers Year : 2022

Improving The Automatic Segmentation Of Elongated Organs Using Geometrical Priors

Abstract

Deep neural networks are widely used for automated organ segmentation as they achieve promising results for clinical applications. Some organs are more challenging to delineate than others, for instance due to low contrast at their boundaries. In this paper, we propose to improve the segmentation of elongated organs thanks to Geometrical Priors that can be introduced during training, using a local Tversky loss function, or at post-processing, using local thresholds. Both strategies do not introduce additional training parameters and can be easily applied to any existing network. The proposed method is evaluated on the challenging problem of pancreas segmentation. Results show that Geometrical Priors allow us to correct the systematic under-segmentation pattern of a state-of-the-art method, while preserving the overall segmentation quality.
Fichier principal
Vignette du fichier
vetil_isbi_2022_final_version.pdf (458.91 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03628860 , version 1 (03-04-2022)

Identifiers

  • HAL Id : hal-03628860 , version 1

Cite

Rebeca Vétil, Alexandre Bône, Marie-Pierre Vullierme, Marc-Michel Rohé, Pietro Gori, et al.. Improving The Automatic Segmentation Of Elongated Organs Using Geometrical Priors. IEEE International Symposium on Biomedical Imaging (ISBI 2022 ), Mar 2022, Kolkata, India. ⟨hal-03628860⟩
169 View
118 Download

Share

Gmail Facebook X LinkedIn More