Finite elements modelling of the long term behaviour of a full scale flexible pavement with the shakedown theory
Résumé
Rutting, due to permanent deformations of unbound materials, is one of the principal damage modes of low-traffic pavements. Flexible pavement design methods remain empirical; they do not take into account the inelastic behaviour of pavement materials and do not predict the rutting under cyclic loading. A simplified method, based on the concept of the shakedown theory developed by Zarka for metallic structures under cyclic loadings, has been used to estimate the permanent deformations of unbound granular materials subjected to traffic loading. Based on repeated load triaxial tests, a general procedure has been developed for the determination of the material parameters of the constitutive model. Finally, the results of a finite elements modelling of the long-term behaviour of a flexible pavement with the simplified method are presented and compared with the results of a full-scale flexible pavement experiment performed by Laboratoire Central des Ponts et Chaussées. Finally, the calculation of the rut depth evolution with time is carried out.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...